Mechanomedicine is an emerging field focused on characterizing mechanical changes in cells and tissues coupled with a specific disease. Understanding the mechanical cues that drive disease progression, and whether tissue stiffening can precede disease development, is crucial in order to define new mechanical biomarkers to improve and develop diagnostic and prognostic tools. Classically known stromal regulators, such as fibroblasts, and more recently acknowledged factors such as the microbiome and extracellular vesicles, play a crucial role in modifications to the stroma and extracellular matrix (ECM). These modifications ultimately lead to an alteration of the mechanical properties (stiffness) of the tissue, contributing to disease onset and progression. We describe here classic and emerging mediators of ECM remodeling, and discuss state-of-the-art studies characterizing mechanical fingerprints of urological diseases, showing a general trend between increased tissue stiffness and severity of disease. Finally, we point to the clinical potential of tissue stiffness as a diagnostic and prognostic factor in the urological field, as well as a possible target for new innovative drugs.

Causal contributors to tissue stiffness and clinical relevance in urology

Pederzoli F.;Bandini M.;Necchi A.;Salonia A.
;
2021-01-01

Abstract

Mechanomedicine is an emerging field focused on characterizing mechanical changes in cells and tissues coupled with a specific disease. Understanding the mechanical cues that drive disease progression, and whether tissue stiffening can precede disease development, is crucial in order to define new mechanical biomarkers to improve and develop diagnostic and prognostic tools. Classically known stromal regulators, such as fibroblasts, and more recently acknowledged factors such as the microbiome and extracellular vesicles, play a crucial role in modifications to the stroma and extracellular matrix (ECM). These modifications ultimately lead to an alteration of the mechanical properties (stiffness) of the tissue, contributing to disease onset and progression. We describe here classic and emerging mediators of ECM remodeling, and discuss state-of-the-art studies characterizing mechanical fingerprints of urological diseases, showing a general trend between increased tissue stiffness and severity of disease. Finally, we point to the clinical potential of tissue stiffness as a diagnostic and prognostic factor in the urological field, as well as a possible target for new innovative drugs.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/120478
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 39
social impact