Neuropsychological impairments represent a central feature of psychosis-spectrum disorders. It is characterized by a great both within- and between-subjects variability (i.e. cognitive heterogeneity), which needs to be better disentangled. The present study aimed to describe the distribution of performance on the Brief Assessment of Cognition in Schizophrenia (BACS) by using the Equivalent Scores, in order to balance statistical methodological problems. To do so, cognitive performance groups were branded, identifying the main factors contributing to cognitive heterogeneity. A sample of 583 patients with a diagnosis of Schizophrenia or Psychotic Disorder Not Otherwise Specified was enrolled and assessed for neurocognition and intellectual level. K-means cluster analysis was performed based on BACS Equivalent Scores. Differences among clusters were analyzed throughout Analysis of Variance and Discriminant Function Analysis in order to identify the most significant predictors of cluster membership. For each cognitive task, roughly 40% of patients displayed poor performance, while up to 63% displayed a symbol-coding deficit. K-means cluster analysis depicted three profiles characterized by “near-normal” cognition, widespread impairment, and “borderline” profile. Discriminant analysis selected Verbal IQ and diagnosis as predictors of cluster membership. Our findings support the usefulness of Equivalent Scores and cluster analysis to explain cognitive heterogeneity, and tailor better interventions.
Disentangling Cognitive Heterogeneity in Psychotic Spectrum Disorders
Bosinelli F.;Spangaro M.;Bosia M.;Cavallaro R.
2021-01-01
Abstract
Neuropsychological impairments represent a central feature of psychosis-spectrum disorders. It is characterized by a great both within- and between-subjects variability (i.e. cognitive heterogeneity), which needs to be better disentangled. The present study aimed to describe the distribution of performance on the Brief Assessment of Cognition in Schizophrenia (BACS) by using the Equivalent Scores, in order to balance statistical methodological problems. To do so, cognitive performance groups were branded, identifying the main factors contributing to cognitive heterogeneity. A sample of 583 patients with a diagnosis of Schizophrenia or Psychotic Disorder Not Otherwise Specified was enrolled and assessed for neurocognition and intellectual level. K-means cluster analysis was performed based on BACS Equivalent Scores. Differences among clusters were analyzed throughout Analysis of Variance and Discriminant Function Analysis in order to identify the most significant predictors of cluster membership. For each cognitive task, roughly 40% of patients displayed poor performance, while up to 63% displayed a symbol-coding deficit. K-means cluster analysis depicted three profiles characterized by “near-normal” cognition, widespread impairment, and “borderline” profile. Discriminant analysis selected Verbal IQ and diagnosis as predictors of cluster membership. Our findings support the usefulness of Equivalent Scores and cluster analysis to explain cognitive heterogeneity, and tailor better interventions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.