The neural mechanisms subserving the processing of abstract concepts remain largely debated. Even within the embodiment theoretical framework, most authors suggest that abstract concepts are coded in a linguistic propositional format, although they do not completely deny the role of sensorimotor and emotional experiences in coding it. To our knowledge, only one recent proposal puts forward that the processing of concrete and abstract concepts relies on the same mechanisms, with the only difference being in the complexity of the underlying experiences. In this paper, we performed a meta-analysis using the Activation Likelihood Estimates (ALE) method on 33 functional neuroimaging studies that considered activations related to abstract and concrete concepts. The results suggest that (1) concrete and abstract concepts share the recruitment of the temporo-fronto-parietal circuits normally involved in the interactions with the physical world, (2) processing concrete concepts recruits fronto-parietal areas better than abstract concepts, and (3) abstract concepts recruit Broca’s region more strongly than concrete ones. Based on anatomical and physiological evidence, Broca’s region is not only a linguistic region mainly devoted to speech production, but it is endowed with complex motor representations of different biological effectors. Hence, we propose that the stronger recruitment of this region for abstract concepts is expression of the complex sensorimotor experiences underlying it, rather than evidence of a purely linguistic format of its processing.
Evidence for the Concreteness of Abstract Language: A Meta-Analysis of Neuroimaging Studies
Del Maschio N.;Fedeli D.;Buccino G.
2022-01-01
Abstract
The neural mechanisms subserving the processing of abstract concepts remain largely debated. Even within the embodiment theoretical framework, most authors suggest that abstract concepts are coded in a linguistic propositional format, although they do not completely deny the role of sensorimotor and emotional experiences in coding it. To our knowledge, only one recent proposal puts forward that the processing of concrete and abstract concepts relies on the same mechanisms, with the only difference being in the complexity of the underlying experiences. In this paper, we performed a meta-analysis using the Activation Likelihood Estimates (ALE) method on 33 functional neuroimaging studies that considered activations related to abstract and concrete concepts. The results suggest that (1) concrete and abstract concepts share the recruitment of the temporo-fronto-parietal circuits normally involved in the interactions with the physical world, (2) processing concrete concepts recruits fronto-parietal areas better than abstract concepts, and (3) abstract concepts recruit Broca’s region more strongly than concrete ones. Based on anatomical and physiological evidence, Broca’s region is not only a linguistic region mainly devoted to speech production, but it is endowed with complex motor representations of different biological effectors. Hence, we propose that the stronger recruitment of this region for abstract concepts is expression of the complex sensorimotor experiences underlying it, rather than evidence of a purely linguistic format of its processing.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.