The success of implant performance and arthroplasty is based on several factors, including oxidative stress-induced osteolysis. Oxidative stress is a key factor of the inflammatory response. Implant biomaterials can release wear particles which may elicit adverse reactions in patients, such as local inflammatory response leading to tissue damage, which eventually results in loosening of the implant. Wear debris undergo phagocytosis by macrophages, inducing a low-grade chronic inflammation and reactive oxygen species (ROS) production. In addition, ROS can also be directly produced by prosthetic biomaterial oxidation. Overall, ROS amplify the inflammatory response and stimulate both RANKL-induced osteoclastogenesis and osteoblast apoptosis, resulting in bone resorption, leading to periprosthetic osteolysis. Therefore, a growing understanding of the mechanism of oxidative stress-induced periprosthetic osteolysis and anti-oxidant strategies of implant design as well as the addition of anti-oxidant agents will help to improve implants' performances and therapeutic approaches.

Effect of Oxidative Stress on Bone Remodeling in Periprosthetic Osteolysis

Banfi, G;
2021

Abstract

The success of implant performance and arthroplasty is based on several factors, including oxidative stress-induced osteolysis. Oxidative stress is a key factor of the inflammatory response. Implant biomaterials can release wear particles which may elicit adverse reactions in patients, such as local inflammatory response leading to tissue damage, which eventually results in loosening of the implant. Wear debris undergo phagocytosis by macrophages, inducing a low-grade chronic inflammation and reactive oxygen species (ROS) production. In addition, ROS can also be directly produced by prosthetic biomaterial oxidation. Overall, ROS amplify the inflammatory response and stimulate both RANKL-induced osteoclastogenesis and osteoblast apoptosis, resulting in bone resorption, leading to periprosthetic osteolysis. Therefore, a growing understanding of the mechanism of oxidative stress-induced periprosthetic osteolysis and anti-oxidant strategies of implant design as well as the addition of anti-oxidant agents will help to improve implants' performances and therapeutic approaches.
Oxidative stress
Periprosthetic osteolysis
Implant integration
Inflammatory response
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/132142
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact