La sclerosi multipla (SM), una malattia infiammatoria autoimmune caratterizzata da alterazione della mielina e da danno assonale, è la principale causa di disabilità causata da neurodegenerazione progressiva nei giovani adulti. La maggior parte dei pazienti con SM ha un accumulo continuo di disabilità per tutta la durata della vita che porta alla SM progressiva (SMP), una malattia ancora incurabile. La sfida urgente è lo sviluppo di nuove terapie efficaci per le forme progressive di SM, che potrebbero rallentare o prevenire la neurodegenerazione in corso, favorendo meccanismi di neuroprotezione e di rimielinizzazione. Uno degli approcci per raggiungere questo obiettivo è il riposizionamento di farmaci già presenti sul mercato, e che prevede l'identificazione di nuovi bersagli per i suddetti medicinali allo scopo di trattare altre malattie. Oltre al riutilizzo dei farmaci, la predizione dei farmaci in silico offre un approccio complementare per la selezione di validi candidati farmacologici di successo. Per riprodurre meglio il tessuto biologico umano, le cellule staminali pluripotente indotte (CSPi) possono fornire uno strumento prezioso per la modellazione della malattia in vitro e una fonte cellulare quasi infinita, preservando il background genetico del donatore. Le colture di oligodendrociti e di cellule neuronali derivate da CSPi rappresentano uno strumento unico per modellare le patologie in modo personalizzato per il paziente e per valutare gli effetti pro-mielinizzanti e neuroprotettivi dei farmaci candidati. Lo scopo del progetto è condurre uno screening farmacologico completo e ben caratterizzato, per identificare in definitiva un set di composti con potenziale terapeutico per la SMP. Pertanto, è stato condotto uno screening in vitro su una libreria di farmaci candidati per riposizionamento, utilizzando colture primarie di cellule neuronali murine e da CSPi di derivazione umana. La libreria di farmaci da riposizionare in questo progetto è stata prodotta dallo strumento bioinformatico SPOKE, sviluppato dal laboratorio di S. Baranzini dell'UCSF. L'attività farmacologica di due farmaci selezionati è stata valutata in vivo nel modello preclinico di SM (EAS). Sono attualmente in corso l'identificazione del bersaglio e lo studio del meccanismo d'azione delle proprietà neuroprotettive/rimielinizzanti di questi composti. Inoltre, abbiamo caratterizzato i profili molecolari e i fenotipi funzionali dei neuroni derivati da CSPi da tre coppie gemelle discordanti per la SM al fine di ottenere ulteriori conoscenze sul potenziale impatto dei cambiamenti genetici ed epigenetici sulla suscettibilità del danno neuronale nella SM. Comprendendo meglio le cause alla base della progressione del danno nel sistema nervoso centrale (SNC) e, in particolare, della ridotta capacità di rigenerazione della mielina, lo sviluppo di nuovi trattamenti per i pazienti di sclerosi multipla progressiva sarà infine accelerato.

Multiple sclerosis (MS), an inflammatory autoimmune disease characterised by myelin and axonal damage, is the major cause of progressive neurological disability in young adults. Most MS patients have a continuous accumulation of disability throughout their lifespan leading to progressive MS (PMS), still an incurable disease. The urgent challenge is the development of novel effective therapies for progressive forms of MS, which could slow or prevent ongoing neurodegeneration by targeting neuroprotection and remyelination. One of the rational approaches to achieve this goal is drug repurposing. Drug repurposing focuses on identifying novel targets for generic medications with the indication for other diseases. In addition to drug repurposing, in silico drug prediction offers a complementary approach for the efficient selection of successful drug candidates. To better reproduce the human biological tissue, iPSCs can provide a valuable tool for in vitro disease modelling and almost an infinite cellular source with the preserved genetic background of the donor. The iPSC-derived oligodendrocyte and neuronal cultures represent a unique patient-specific “disease-in-a-dish” tool for evaluating drug candidates’ pro-myelinating and neuroprotective effects. The aim of the project is to design and conduct a comprehensive and well-characterized pharmacological screening to ultimately identify a handful of lead compounds with therapeutic potential for PMS. Therefore, in vitro phenotypic drug screening of drug repurposing library using primary murine and hiPSC-derived neuronal cultures was set up. The library of repurposed drugs in this project was selected by machine learning-based tool SPOKE in collaboration with S. Baranzini lab at UCSF. The pharmacological activity of two selected drugs was evaluated in vivo in the preclinical model of MS (EAE). Target identification and mechanism of action of hit compounds neuroprotective/remyelinating properties are currently ongoing. In addition, we have characterized the molecular profiles and functional phenotypes of hiPSC-derived neurons from three twin pairs discordant for MS that will provide additional knowledge on the potential impact of genetic and epigenetic changes on neuronal susceptibility to damage in MS. By better understanding the underlying causes of progressive nerve damage and impaired myelin regeneration, the development of novel treatments for people with PMS will be eventually accelerated.

Development of an in vitro functional platform to discover new drugs for progressive multiple sclerosis and translation to preclinical animal models / Svetlana Bezukladova - : . , 2022 May 13. ((34. ciclo, Anno Accademico 2020/2021.

Development of an in vitro functional platform to discover new drugs for progressive multiple sclerosis and translation to preclinical animal models

BEZUKLADOVA , SVETLANA
2022

Abstract

Multiple sclerosis (MS), an inflammatory autoimmune disease characterised by myelin and axonal damage, is the major cause of progressive neurological disability in young adults. Most MS patients have a continuous accumulation of disability throughout their lifespan leading to progressive MS (PMS), still an incurable disease. The urgent challenge is the development of novel effective therapies for progressive forms of MS, which could slow or prevent ongoing neurodegeneration by targeting neuroprotection and remyelination. One of the rational approaches to achieve this goal is drug repurposing. Drug repurposing focuses on identifying novel targets for generic medications with the indication for other diseases. In addition to drug repurposing, in silico drug prediction offers a complementary approach for the efficient selection of successful drug candidates. To better reproduce the human biological tissue, iPSCs can provide a valuable tool for in vitro disease modelling and almost an infinite cellular source with the preserved genetic background of the donor. The iPSC-derived oligodendrocyte and neuronal cultures represent a unique patient-specific “disease-in-a-dish” tool for evaluating drug candidates’ pro-myelinating and neuroprotective effects. The aim of the project is to design and conduct a comprehensive and well-characterized pharmacological screening to ultimately identify a handful of lead compounds with therapeutic potential for PMS. Therefore, in vitro phenotypic drug screening of drug repurposing library using primary murine and hiPSC-derived neuronal cultures was set up. The library of repurposed drugs in this project was selected by machine learning-based tool SPOKE in collaboration with S. Baranzini lab at UCSF. The pharmacological activity of two selected drugs was evaluated in vivo in the preclinical model of MS (EAE). Target identification and mechanism of action of hit compounds neuroprotective/remyelinating properties are currently ongoing. In addition, we have characterized the molecular profiles and functional phenotypes of hiPSC-derived neurons from three twin pairs discordant for MS that will provide additional knowledge on the potential impact of genetic and epigenetic changes on neuronal susceptibility to damage in MS. By better understanding the underlying causes of progressive nerve damage and impaired myelin regeneration, the development of novel treatments for people with PMS will be eventually accelerated.
MARTINO, GIANVITO
Development of an in vitro functional platform to discover new drugs for progressive multiple sclerosis and translation to preclinical animal models / Svetlana Bezukladova - : . , 2022 May 13. ((34. ciclo, Anno Accademico 2020/2021.
Doctoral Thesis
File in questo prodotto:
File Dimensione Formato  
PhD_Thesis_Bezukladova.pdf

embargo fino al 13/05/2023

Descrizione: Development of an in vitro functional platform to discover new drugs for progressive multiple sclerosis and translation to preclinical animal models
Tipologia: Tesi di dottorato
Dimensione 33.34 MB
Formato Adobe PDF
33.34 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/133063
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact