c-Jun N-terminal kinases (JNKs) are stress-activated serine/threonine protein kinases belonging to the mitogen-activated protein kinase (MAPK) family. Among them, JNK3 is selectively expressed in the central nervous system, cardiac smooth muscle, and testis. In addition, it is the most responsive JNK isoform to stress stimuli in the brain, and it is involved in synaptic dysfunction, an essential step in neurodegenerative processes. JNK3 pathway is organized in a cascade of amplification in which signal transduction occurs by stepwise, highly controlled phosphorylation. Since different MAPKs share common upstream activators, pathway specificity is guaranteed by scaffold proteins such as JIP1 and beta-arrestin2. To better elucidate the physiological mechanisms regulating JNK3 in neurons, and how these interactions may be involved in synaptic (dys)function, we used (i) super-resolution microscopy to demonstrate the colocalization among JNK3-PSD95-JIP1 and JNK3-PSD95-beta-arrestin2 in cultured hippocampal neurons, and (ii) co-immunoprecipitation techniques to show that the two scaffold proteins and JNK3 can be found interacting together with PSD95. The protein-protein interactions that govern the formation of these two complexes, JNK3-PSD95-JIP1 and JNK3-PSD95-beta-arrestin2, may be used as targets to interfere with their downstream synaptic events.

Colocalization and Interaction Study of Neuronal JNK3, JIP1, and β-Arrestin2 Together with PSD95

Colnaghi, Luca;
2022-01-01

Abstract

c-Jun N-terminal kinases (JNKs) are stress-activated serine/threonine protein kinases belonging to the mitogen-activated protein kinase (MAPK) family. Among them, JNK3 is selectively expressed in the central nervous system, cardiac smooth muscle, and testis. In addition, it is the most responsive JNK isoform to stress stimuli in the brain, and it is involved in synaptic dysfunction, an essential step in neurodegenerative processes. JNK3 pathway is organized in a cascade of amplification in which signal transduction occurs by stepwise, highly controlled phosphorylation. Since different MAPKs share common upstream activators, pathway specificity is guaranteed by scaffold proteins such as JIP1 and beta-arrestin2. To better elucidate the physiological mechanisms regulating JNK3 in neurons, and how these interactions may be involved in synaptic (dys)function, we used (i) super-resolution microscopy to demonstrate the colocalization among JNK3-PSD95-JIP1 and JNK3-PSD95-beta-arrestin2 in cultured hippocampal neurons, and (ii) co-immunoprecipitation techniques to show that the two scaffold proteins and JNK3 can be found interacting together with PSD95. The protein-protein interactions that govern the formation of these two complexes, JNK3-PSD95-JIP1 and JNK3-PSD95-beta-arrestin2, may be used as targets to interfere with their downstream synaptic events.
2022
brain diseases
neuroprotection
protein-protein interaction
synaptic dysfunction
Disks Large Homolog 4 Protein
Humans
JNK Mitogen-Activated Protein Kinases
Male
Neurons
Phosphorylation
beta-Arrestin 1
Mitogen-Activated Protein Kinase 10
Mitogen-Activated Protein Kinases
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/133614
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact