Purpose: to investigate the preoperative role of ML-based classification using conventional 18F-FDG PET parameters and clinical data in predicting features of EC aggressiveness. Methods: retrospective study, including 123 EC patients who underwent 18F-FDG PET (2009-2021) for preoperative staging. Maximum standardized uptake value (SUVmax), SUVmean, metabolic tumour volume (MTV), and total lesion glycolysis (TLG) were computed on the primary tumour. Age and BMI were collected. Histotype, myometrial invasion (MI), risk group, lymph-nodal involvement (LN), and p53 expression were retrieved from histology. The population was split into a train and a validation set (80-20%). The train set was used to select relevant parameters (Mann-Whitney U test; ROC analysis) and implement ML models, while the validation set was used to test prediction abilities. Results: on the validation set, the best accuracies obtained with individual parameters and ML were: 61% (TLG) and 87% (ML) for MI; 71% (SUVmax) and 79% (ML) for risk groups; 72% (TLG) and 83% (ML) for LN; 45% (SUVmax; SUVmean) and 73% (ML) for p53 expression. Conclusions: ML-based classification using conventional 18F-FDG PET parameters and clinical data demonstrated ability to characterize the investigated features of EC aggressiveness, providing a non-invasive way to support preoperative stratification of EC patients.

Role of Machine Learning (ML)-Based Classification Using Conventional 18F-FDG PET Parameters in Predicting Postsurgical Features of Endometrial Cancer Aggressiveness / Bezzi, Carolina; Bergamini, Alice; Mathoux, Gregory; Ghezzo, Samuele; Monaco, Lavinia; Candotti, Giorgio; Fallanca, Federico; Gajate, Ana Maria Samanes; Rabaiotti, Emanuela; Cioffi, Raffaella; Bocciolone, Luca; Gianolli, Luigi; Taccagni, Gianluca; Candiani, Massimo; Mangili, Giorgia; Mapelli, Paola; Picchio, Maria. - In: CANCERS. - ISSN 2072-6694. - 15:1(2023). [10.3390/cancers15010325]

Role of Machine Learning (ML)-Based Classification Using Conventional 18F-FDG PET Parameters in Predicting Postsurgical Features of Endometrial Cancer Aggressiveness

Bezzi, Carolina
Primo
;
Bergamini, Alice
Secondo
;
Ghezzo, Samuele;Candotti, Giorgio;Cioffi, Raffaella;Candiani, Massimo;Mapelli, Paola
Co-ultimo
;
Picchio, Maria
Co-ultimo
2023-01-01

Abstract

Purpose: to investigate the preoperative role of ML-based classification using conventional 18F-FDG PET parameters and clinical data in predicting features of EC aggressiveness. Methods: retrospective study, including 123 EC patients who underwent 18F-FDG PET (2009-2021) for preoperative staging. Maximum standardized uptake value (SUVmax), SUVmean, metabolic tumour volume (MTV), and total lesion glycolysis (TLG) were computed on the primary tumour. Age and BMI were collected. Histotype, myometrial invasion (MI), risk group, lymph-nodal involvement (LN), and p53 expression were retrieved from histology. The population was split into a train and a validation set (80-20%). The train set was used to select relevant parameters (Mann-Whitney U test; ROC analysis) and implement ML models, while the validation set was used to test prediction abilities. Results: on the validation set, the best accuracies obtained with individual parameters and ML were: 61% (TLG) and 87% (ML) for MI; 71% (SUVmax) and 79% (ML) for risk groups; 72% (TLG) and 83% (ML) for LN; 45% (SUVmax; SUVmean) and 73% (ML) for p53 expression. Conclusions: ML-based classification using conventional 18F-FDG PET parameters and clinical data demonstrated ability to characterize the investigated features of EC aggressiveness, providing a non-invasive way to support preoperative stratification of EC patients.
2023
18F-FDG PET
endometrial cancer
imaging parameters
machine learning
prognostic value
File in questo prodotto:
File Dimensione Formato  
machine learning pet.pdf

accesso aperto

Tipologia: PDF editoriale (versione pubblicata dall'editore)
Licenza: Creative commons
Dimensione 3.53 MB
Formato Adobe PDF
3.53 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/135440
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact