: Cognitive impairment represents a leading residual symptom of COVID-19 infection, which lasts for months after the virus clearance. Up-to-date scientific reports documented a wide spectrum of brain changes in COVID-19 survivors following the illness's resolution, mainly related to neurological and neuropsychiatric consequences. Preliminary insights suggest abnormal brain metabolism, microstructure, and functionality as neural under-layer of post-acute cognitive dysfunction. While previous works focused on brain correlates of impaired cognition as objectively assessed, herein we investigated long-term neural correlates of subjective cognitive decline in a sample of 58 COVID-19 survivors with a multimodal imaging approach. Diffusion Tensor Imaging (DTI) analyses revealed widespread white matter disruption in the sub-group of cognitive complainers compared to the non-complainer one, as indexed by increased axial, radial, and mean diffusivity in several commissural, projection and associative fibres. Likewise, the Multivoxel Pattern Connectivity analysis (MVPA) revealed highly discriminant patterns of functional connectivity in resting-state among the two groups in the right frontal pole and in the middle temporal gyrus, suggestive of inefficient dynamic modulation of frontal brain activity and possible metacognitive dysfunction at rest. Beyond COVID-19 actual pathophysiological brain processes, our findings point toward brain connectome disruption conceivably translating into clinical post-COVID cognitive symptomatology. Our results could pave the way for a potential brain signature of cognitive complaints experienced by COVID-19 survivors, possibly leading to identify early therapeutic targets and thus mitigating its detrimental long-term impact on quality of life in the post-COVID-19 stages.

Brain correlates of subjective cognitive complaints in COVID-19 survivors: A multimodal magnetic resonance imaging study / Paolini, Marco; Palladini, Mariagrazia; Mazza, Mario Gennaro; Colombo, Federica; Vai, Benedetta; Rovere-Querini, Patrizia; Falini, Andrea; Poletti, Sara; Benedetti, Francesco. - In: EUROPEAN NEUROPSYCHOPHARMACOLOGY. - ISSN 0924-977X. - 68:(2022), pp. 1-10. [10.1016/j.euroneuro.2022.12.002]

Brain correlates of subjective cognitive complaints in COVID-19 survivors: A multimodal magnetic resonance imaging study

Paolini, Marco;Palladini, Mariagrazia;Mazza, Mario Gennaro;Colombo, Federica;Rovere-Querini, Patrizia;Falini, Andrea;Poletti, Sara;Benedetti, Francesco
2022-01-01

Abstract

: Cognitive impairment represents a leading residual symptom of COVID-19 infection, which lasts for months after the virus clearance. Up-to-date scientific reports documented a wide spectrum of brain changes in COVID-19 survivors following the illness's resolution, mainly related to neurological and neuropsychiatric consequences. Preliminary insights suggest abnormal brain metabolism, microstructure, and functionality as neural under-layer of post-acute cognitive dysfunction. While previous works focused on brain correlates of impaired cognition as objectively assessed, herein we investigated long-term neural correlates of subjective cognitive decline in a sample of 58 COVID-19 survivors with a multimodal imaging approach. Diffusion Tensor Imaging (DTI) analyses revealed widespread white matter disruption in the sub-group of cognitive complainers compared to the non-complainer one, as indexed by increased axial, radial, and mean diffusivity in several commissural, projection and associative fibres. Likewise, the Multivoxel Pattern Connectivity analysis (MVPA) revealed highly discriminant patterns of functional connectivity in resting-state among the two groups in the right frontal pole and in the middle temporal gyrus, suggestive of inefficient dynamic modulation of frontal brain activity and possible metacognitive dysfunction at rest. Beyond COVID-19 actual pathophysiological brain processes, our findings point toward brain connectome disruption conceivably translating into clinical post-COVID cognitive symptomatology. Our results could pave the way for a potential brain signature of cognitive complaints experienced by COVID-19 survivors, possibly leading to identify early therapeutic targets and thus mitigating its detrimental long-term impact on quality of life in the post-COVID-19 stages.
2022
COVID-19
Diffusion tensor imaging
Functional connectivity
Magnetic resonance imaging
Resting-state
Subjective cognitive dysfunction
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/135774
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact