Radiomics is an emerging field of investigation in medicine consisting in the extraction of quantitative features from conventional medical images and exploring their potentials in improving diagnosis, prognosis and outcome prediction after therapy. Clinical applications are still limited, mostly due to reproducibility and repeatability issues as well as to limited interpretability of predictive radiomic-based features/signatures. In the specific case of gastroesophageal junction (GEJ) adenocarcinoma, the expectancies are particularly high, mainly due to its increasing incidence and to the limited performance of conventional imaging techniques in assessing correct diagnosis and accurate pre-surgical tumor characterization. Accordingly, current literature was reviewed, emphasizing the methodological quality. In addition, papers were scored according to the Radiomic Quality Score (RQS), weighting more the clinical applicability and generalizability of the resulting models. According to the criteria of the search, only two papers were retained: the resulting technical quality was relatively high for both, while the corresponding RQS were 15 and 19 (on a scale of 31). Although the potentials of radiomics in the setting of GEJ adenocarcinoma are relevant, they remain largely unexplored, warranting an urgent need of high-quality, possibly prospective, multicenter studies.

Radiomics is an emerging field of investigation in medicine consisting in the extraction of quantitative features from conventional medical images and exploring their potentials in improving diagnosis, prognosis and outcome prediction after therapy. Clinical applications are still limited, mostly due to reproducibility and repeatability issues as well as to limited interpretability of predictive radiomic-based features/signatures. In the specific case of gastroesophageal junction (GEJ) adenocarcinoma, the expectancies are particularly high, mainly due to its increasing incidence and to the limited performance of conventional imaging techniques in assessing correct diagnosis and accurate pre-surgical tumor characterization. Accordingly, current literature was reviewed, emphasizing the methodological quality. In addition, papers were scored according to the Radiomic Quality Score (RQS), weighting more the clinical applicability and generalizability of the resulting models. According to the criteria of the search, only two papers were retained: the resulting technical quality was relatively high for both, while the corresponding RQS were 15 and 19 (on a scale of 31). Although the potentials of radiomics in the setting of GEJ adenocarcinoma are relevant, they remain largely unexplored, warranting an urgent need of high-quality, possibly prospective, multicenter studies.

Does radiomics play a role in the diagnosis, staging and re-staging of gastroesophageal junction adenocarcinoma?

Palumbo, Diego;De Cobelli, Francesco;
2022-01-01

Abstract

Radiomics is an emerging field of investigation in medicine consisting in the extraction of quantitative features from conventional medical images and exploring their potentials in improving diagnosis, prognosis and outcome prediction after therapy. Clinical applications are still limited, mostly due to reproducibility and repeatability issues as well as to limited interpretability of predictive radiomic-based features/signatures. In the specific case of gastroesophageal junction (GEJ) adenocarcinoma, the expectancies are particularly high, mainly due to its increasing incidence and to the limited performance of conventional imaging techniques in assessing correct diagnosis and accurate pre-surgical tumor characterization. Accordingly, current literature was reviewed, emphasizing the methodological quality. In addition, papers were scored according to the Radiomic Quality Score (RQS), weighting more the clinical applicability and generalizability of the resulting models. According to the criteria of the search, only two papers were retained: the resulting technical quality was relatively high for both, while the corresponding RQS were 15 and 19 (on a scale of 31). Although the potentials of radiomics in the setting of GEJ adenocarcinoma are relevant, they remain largely unexplored, warranting an urgent need of high-quality, possibly prospective, multicenter studies.
2022
Radiomics is an emerging field of investigation in medicine consisting in the extraction of quantitative features from conventional medical images and exploring their potentials in improving diagnosis, prognosis and outcome prediction after therapy. Clinical applications are still limited, mostly due to reproducibility and repeatability issues as well as to limited interpretability of predictive radiomic-based features/signatures. In the specific case of gastroesophageal junction (GEJ) adenocarcinoma, the expectancies are particularly high, mainly due to its increasing incidence and to the limited performance of conventional imaging techniques in assessing correct diagnosis and accurate pre-surgical tumor characterization. Accordingly, current literature was reviewed, emphasizing the methodological quality. In addition, papers were scored according to the Radiomic Quality Score (RQS), weighting more the clinical applicability and generalizability of the resulting models. According to the criteria of the search, only two papers were retained: the resulting technical quality was relatively high for both, while the corresponding RQS were 15 and 19 (on a scale of 31). Although the potentials of radiomics in the setting of GEJ adenocarcinoma are relevant, they remain largely unexplored, warranting an urgent need of high-quality, possibly prospective, multicenter studies.
Cardias tumor
Gastroesophageal junction adenocarcinoma
Predictive models
Radiomics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/135844
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact