(1) Background: Injectable hyaluronic acid (HA) dermal fillers are used in several chirurgical practices and in aesthetic medicine. HA filler stability can be enhanced through different cross-linking technologies; one of the most frequently cross-linker used is 1,4-butanediol diglycidyl ether (BDDE), also present in the HA-BDDE dermal filler family of the company Matex Lab S.p.A. (Brindisi, Italy). Our overview is focused on their characterization, drawing a correlation between matrix structure, rheological and physicochemical properties related to their cross-linking technologies. (2) Methods: Four different injectable HA hydrogels were characterized through optical microscopic examination and rheological behavior investigation. (3) Results: The cross-linked HA dermal fillers showed a fibrous “spiderweb-like” matrix structure and an elastic and solid-like profile. (4) Conclusions: The comparative analysis represents a preliminary characterization of these injectable medical devices in order to identify their best field of application.
Comparative physicochemical analysis among 1,4-butanediol diglycidyl ether cross-linked hyaluronic acid dermal fillers
Guida S.;
2021-01-01
Abstract
(1) Background: Injectable hyaluronic acid (HA) dermal fillers are used in several chirurgical practices and in aesthetic medicine. HA filler stability can be enhanced through different cross-linking technologies; one of the most frequently cross-linker used is 1,4-butanediol diglycidyl ether (BDDE), also present in the HA-BDDE dermal filler family of the company Matex Lab S.p.A. (Brindisi, Italy). Our overview is focused on their characterization, drawing a correlation between matrix structure, rheological and physicochemical properties related to their cross-linking technologies. (2) Methods: Four different injectable HA hydrogels were characterized through optical microscopic examination and rheological behavior investigation. (3) Results: The cross-linked HA dermal fillers showed a fibrous “spiderweb-like” matrix structure and an elastic and solid-like profile. (4) Conclusions: The comparative analysis represents a preliminary characterization of these injectable medical devices in order to identify their best field of application.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.