Low-level rifampin resistance associated with specific rpoB mutations (referred as "disputed") in Mycobacterium tuberculosis is easily missed by some phenotypic methods. To understand the mechanism by which some mutations are systematically missed by MGIT phenotypic testing, we performed an in silico analysis of their effect on the structural interaction between the RpoB protein and rifampin. We also characterized 24 representative clinical isolates by determining MICs on 7H10 agar and testing them by an extended MGIT protocol. We analyzed 2,097 line probe assays, and 156 (7.4%) cases showed a hybridization pattern referred to here as "no wild type + no mutation." Isolates harboring "disputed" mutations (L430P, D435Y, H445C/L/N/S, and L452P) tested susceptible in MGIT, with prevalence ranging from 15 to 57% (overall, 16 out of 55 isolates [29%]). Our in silico analysis did not highlight any difference between "disputed" and "undisputed" substitutions, indicating that all rpoB missense mutations affect the rifampin binding site. MIC testing showed that "undisputed" mutations are associated with higher MIC values (>= 20 mg/liter) compared to "disputed" mutations (4 to >20 mg/liter). Whereas "undisputed" mutations didn't show any delay (Delta) in time to positivity of the test tube compared to the control tube on extended MGIT protocol, "disputed" mutations showed a mean Delta of 7.2 days (95% confidence interval [CI], 4.2 to 10.2 days; P < 0.05), providing evidence that mutations conferring low-level resistance are associated with a delay in growth on MGIT. Considering the proved relevance of L430P, D435Y, H445C/L/N, and L452P mutations in determining clinical resistance, genotypic drug susceptibility testing (DST) should be used to replace phenotypic results (MGIT) when such mutations are found.

Role of Disputed Mutations in the rpoB Gene in Interpretation of Automated Liquid MGIT Culture Results for Rifampin Susceptibility Testing of Mycobacterium tuberculosis / Miotto, Paolo; Cabibbe, Andrea M; Borroni, Emanuele; Degano, Massimo; Cirillo, Daniela M. - In: JOURNAL OF CLINICAL MICROBIOLOGY. - ISSN 0095-1137. - 56:5(2018). [10.1128/JCM.01599-17]

Role of Disputed Mutations in the rpoB Gene in Interpretation of Automated Liquid MGIT Culture Results for Rifampin Susceptibility Testing of Mycobacterium tuberculosis

Degano, Massimo
Penultimo
Investigation
;
2018-01-01

Abstract

Low-level rifampin resistance associated with specific rpoB mutations (referred as "disputed") in Mycobacterium tuberculosis is easily missed by some phenotypic methods. To understand the mechanism by which some mutations are systematically missed by MGIT phenotypic testing, we performed an in silico analysis of their effect on the structural interaction between the RpoB protein and rifampin. We also characterized 24 representative clinical isolates by determining MICs on 7H10 agar and testing them by an extended MGIT protocol. We analyzed 2,097 line probe assays, and 156 (7.4%) cases showed a hybridization pattern referred to here as "no wild type + no mutation." Isolates harboring "disputed" mutations (L430P, D435Y, H445C/L/N/S, and L452P) tested susceptible in MGIT, with prevalence ranging from 15 to 57% (overall, 16 out of 55 isolates [29%]). Our in silico analysis did not highlight any difference between "disputed" and "undisputed" substitutions, indicating that all rpoB missense mutations affect the rifampin binding site. MIC testing showed that "undisputed" mutations are associated with higher MIC values (>= 20 mg/liter) compared to "disputed" mutations (4 to >20 mg/liter). Whereas "undisputed" mutations didn't show any delay (Delta) in time to positivity of the test tube compared to the control tube on extended MGIT protocol, "disputed" mutations showed a mean Delta of 7.2 days (95% confidence interval [CI], 4.2 to 10.2 days; P < 0.05), providing evidence that mutations conferring low-level resistance are associated with a delay in growth on MGIT. Considering the proved relevance of L430P, D435Y, H445C/L/N, and L452P mutations in determining clinical resistance, genotypic drug susceptibility testing (DST) should be used to replace phenotypic results (MGIT) when such mutations are found.
2018
Mycobacterium tuberculosis
diagnostics
drug susceptibility testing
multidrug resistance
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/139136
Citazioni
  • ???jsp.display-item.citation.pmc??? 45
  • Scopus 93
  • ???jsp.display-item.citation.isi??? 90
social impact