The myotubularin family is a large eukaryotic group within the tyrosine/dual-specificity phosphatase super-family (PTP/DSP). Among the 14 human members, three are mutated in genetic diseases: myotubular myopathy and two forms of Charcot–Marie–Tooth neuropathy. We present an analysis of the myotubularin family in sequenced genomes. The myotubularin family encompasses catalytically active and inactive phosphatases, and both classes are well conserved from nematode to man. Catalytically active myotubularins dephosphorylate phosphatidylinositol 3-phosphate (PtdIns3P) and PtdIns3,5P2, leading to the production of PtdIns and PtdIns5P. This activity may be modulated by direct interaction with catalytically inactive myotubularins. These phosphoinositides are signaling molecules that are notably involved in vacuolar transport and membrane trafficking. Myotubularins are thus proposed to be implicated in these cellular mechanisms, and recent observations on myotubularins homologues in the nematode Caenorhabditis elegans indicate a role in endocytosis.

Myotubularins, a large disease-associated family of cooperating catalytically active and inactive phosphoinositides phosphatases

Bolino A
Penultimo
;
2003-01-01

Abstract

The myotubularin family is a large eukaryotic group within the tyrosine/dual-specificity phosphatase super-family (PTP/DSP). Among the 14 human members, three are mutated in genetic diseases: myotubular myopathy and two forms of Charcot–Marie–Tooth neuropathy. We present an analysis of the myotubularin family in sequenced genomes. The myotubularin family encompasses catalytically active and inactive phosphatases, and both classes are well conserved from nematode to man. Catalytically active myotubularins dephosphorylate phosphatidylinositol 3-phosphate (PtdIns3P) and PtdIns3,5P2, leading to the production of PtdIns and PtdIns5P. This activity may be modulated by direct interaction with catalytically inactive myotubularins. These phosphoinositides are signaling molecules that are notably involved in vacuolar transport and membrane trafficking. Myotubularins are thus proposed to be implicated in these cellular mechanisms, and recent observations on myotubularins homologues in the nematode Caenorhabditis elegans indicate a role in endocytosis.
File in questo prodotto:
File Dimensione Formato  
ddg273.pdf

solo gestori archivio

Tipologia: PDF editoriale (versione pubblicata dall'editore)
Licenza: Copyright dell'editore
Dimensione 344.59 kB
Formato Adobe PDF
344.59 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/139485
Citazioni
  • ???jsp.display-item.citation.pmc??? 77
  • Scopus 150
  • ???jsp.display-item.citation.isi??? 136
social impact