Aim. To develop an algorithm, based on convolutional neural network (CNN), for the classification of lung cancer lesions as T1-T2 or T3-T4 on staging fluorodeoxyglucose positron emission tomography (FDG-PET)/CT images. Methods. We retrospectively selected a cohort of 472 patients (divided in the training, validation, and test sets) submitted to staging FDG-PET/CT within 60 days before biopsy or surgery. TNM system seventh edition was used as reference. Postprocessing was performed to generate an adequate dataset. The input of CNNs was a bounding box on both PET and CT images, cropped around the lesion centre. The results were classified as Correct (concordance between reference and prediction) and Incorrect (discordance between reference and prediction). Accuracy (Correct/[Correct + Incorrect]), recall (Correctly predicted T3-T4/[all T3-T4]), and specificity (Correctly predicted T1-T2/[all T1-T2]), as commonly defined in deep learning models, were used to evaluate CNN performance. The area under the curve (AUC) was calculated for the final model. Results. The algorithm, composed of two networks (a “feature extractor” and a “classifier”), developed and tested achieved an accuracy, recall, specificity, and AUC of 87%, 69%, 69%, and 0.83; 86%, 77%, 70%, and 0.73; and 90%, 47%, 67%, and 0.68 in the training, validation, and test sets, respectively. Conclusion. We obtained proof of concept that CNNs can be used as a tool to assist in the staging of patients affected by lung cancer.

Convolutional Neural Networks Promising in Lung Cancer T-Parameter Assessment on Baseline FDG-PET/CT / Kirienko, M; Sollini, M; Silvestri, G; Mognetti, S; Voulaz, E; Antunovic, L; Rossi, A; Antiga, L; Chiti, A. - In: CONTRAST MEDIA & MOLECULAR IMAGING. - ISSN 1555-4309. - 2018:(2018). [10.1155/2018/1382309]

Convolutional Neural Networks Promising in Lung Cancer T-Parameter Assessment on Baseline FDG-PET/CT

Sollini M;Chiti A
Ultimo
2018-01-01

Abstract

Aim. To develop an algorithm, based on convolutional neural network (CNN), for the classification of lung cancer lesions as T1-T2 or T3-T4 on staging fluorodeoxyglucose positron emission tomography (FDG-PET)/CT images. Methods. We retrospectively selected a cohort of 472 patients (divided in the training, validation, and test sets) submitted to staging FDG-PET/CT within 60 days before biopsy or surgery. TNM system seventh edition was used as reference. Postprocessing was performed to generate an adequate dataset. The input of CNNs was a bounding box on both PET and CT images, cropped around the lesion centre. The results were classified as Correct (concordance between reference and prediction) and Incorrect (discordance between reference and prediction). Accuracy (Correct/[Correct + Incorrect]), recall (Correctly predicted T3-T4/[all T3-T4]), and specificity (Correctly predicted T1-T2/[all T1-T2]), as commonly defined in deep learning models, were used to evaluate CNN performance. The area under the curve (AUC) was calculated for the final model. Results. The algorithm, composed of two networks (a “feature extractor” and a “classifier”), developed and tested achieved an accuracy, recall, specificity, and AUC of 87%, 69%, 69%, and 0.83; 86%, 77%, 70%, and 0.73; and 90%, 47%, 67%, and 0.68 in the training, validation, and test sets, respectively. Conclusion. We obtained proof of concept that CNNs can be used as a tool to assist in the staging of patients affected by lung cancer.
File in questo prodotto:
File Dimensione Formato  
1382309.pdf

accesso aperto

Tipologia: PDF editoriale (versione pubblicata dall'editore)
Licenza: Creative commons
Dimensione 2.2 MB
Formato Adobe PDF
2.2 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/140861
Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 65
  • ???jsp.display-item.citation.isi??? 55
social impact