BACKGROUND The extent to which atrial myocardium is remodeled in patients with persistent lone atrial fibrillation (LAF) is largely unknown. OBJECTIVE The purpose of this study was to perform a clinicopathologic investigation in patients with persistent LAF. METHODS We characterized structural and molecular remodeling in atrial biopsies from 19 patients (17 males, mean age 49 years) with persistent (> 7 days; n = 8) or long-lasting persistent (> 1 year; n = 11) LAF who underwent surgical ablation. Atrial tissue from 15 autopsy samples without clinicopathologic evidence of heart disease served as controls. RESULTS Morphometric analysis showed cardiomyocyte hypertrophy and greater amounts of myolytic damage and interstitial fibrosis in persistent LAF patients compared to controls (P <.0001). Atrial tissue Levels of heme oxygenase-1 and 3-nitrotyrosine were increased in persistent LAF patients (P <.001), consistent with oxidative stress. Levels of superoxide dismutase-2, interleukin-8, interleukin-10, tumor necrosis factor-alpha, and thiobarbituric acid reactive substance were greater in controls than in persistent LAF patients. Immunoreactive signal for connexin43 was reduced more frequently in persistent LAF patients than controls. There was no correlation between features of structural or molecular remodeling and clinical parameters, including persistent LAF duration. CONCLUSION In persistent LAF patients, the atria are modified by structural remodeling and molecular changes of oxidative stress. Tissue changes in persistent LAF appear to occur early after its onset and are qualitatively no different than those observed in patients with atrial fibrillation related to conventional risk factors. These findings suggest that different types of atrial fibrillation are associated with the same spectrum of tissue lesions. Early intervention to restore sinus rhythm in persistent LAF patients may prevent irreversible tissue change, especially interstitial fibrosis.

Persistent lone atrial fibrillation: Clinicopathologic study of 19 cases

ALFIERI , OTTAVIO
2014-01-01

Abstract

BACKGROUND The extent to which atrial myocardium is remodeled in patients with persistent lone atrial fibrillation (LAF) is largely unknown. OBJECTIVE The purpose of this study was to perform a clinicopathologic investigation in patients with persistent LAF. METHODS We characterized structural and molecular remodeling in atrial biopsies from 19 patients (17 males, mean age 49 years) with persistent (> 7 days; n = 8) or long-lasting persistent (> 1 year; n = 11) LAF who underwent surgical ablation. Atrial tissue from 15 autopsy samples without clinicopathologic evidence of heart disease served as controls. RESULTS Morphometric analysis showed cardiomyocyte hypertrophy and greater amounts of myolytic damage and interstitial fibrosis in persistent LAF patients compared to controls (P <.0001). Atrial tissue Levels of heme oxygenase-1 and 3-nitrotyrosine were increased in persistent LAF patients (P <.001), consistent with oxidative stress. Levels of superoxide dismutase-2, interleukin-8, interleukin-10, tumor necrosis factor-alpha, and thiobarbituric acid reactive substance were greater in controls than in persistent LAF patients. Immunoreactive signal for connexin43 was reduced more frequently in persistent LAF patients than controls. There was no correlation between features of structural or molecular remodeling and clinical parameters, including persistent LAF duration. CONCLUSION In persistent LAF patients, the atria are modified by structural remodeling and molecular changes of oxidative stress. Tissue changes in persistent LAF appear to occur early after its onset and are qualitatively no different than those observed in patients with atrial fibrillation related to conventional risk factors. These findings suggest that different types of atrial fibrillation are associated with the same spectrum of tissue lesions. Early intervention to restore sinus rhythm in persistent LAF patients may prevent irreversible tissue change, especially interstitial fibrosis.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/14100
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 38
social impact