Background/rationale Artificial intelligence (AI)-based clinical decision support tools, being developed across multiple fields in medicine, need to be evaluated for their impact on the treatment and outcomes of patients as well as optimisation of the clinical workflow. The RAZORBILL study will investigate the impact of advanced AI segmentation algorithms on the disease activity assessment in patients with neovascular age-related macular degeneration (nAMD) by enriching three-dimensional (3D) retinal optical coherence tomography (OCT) scans with automated fluid and layer quantification measurements. Methods RAZORBILL is an observational, multicentre, multinational, open-label study, comprising two phases: (a) clinical data collection (phase I): an observational study design, which enforces neither strict visit schedule nor mandated treatment regimen was chosen as an appropriate design to collect data in a real-world clinical setting to enable evaluation in phase II and (b) OCT enrichment analysis (phase II): de-identified 3D OCT scans will be evaluated for disease activity. Within this evaluation, investigators will review the scans once enriched with segmentation results (i.e., highlighted and quantified pathological fluid volumes) and once in its original (i.e., non-enriched) state. This review will be performed using an integrated crossover design, where investigators are used as their own controls allowing the analysis to account for differences in expertise and individual disease activity definitions. Conclusions In order to apply novel AI tools to routine clinical care, their benefit as well as operational feasibility need to be carefully investigated. RAZORBILL will inform on the value of AI-based clinical decision support tools. It will clarify if these can be implemented in clinical treatment of patients with nAMD and whether it allows for optimisation of individualised treatment in routine clinical care.

Does real-time artificial intelligence-based visual pathology enhancement of three-dimensional optical coherence tomography scans optimise treatment decision in patients with nAMD? Rationale and design of the RAZORBILL study / Holz, Frank G; Abreu-Gonzalez, Rodrigo; Bandello, Francesco; Duval, Renaud; O'Toole, Louise; Pauleikhoff, Daniel; Staurenghi, Giovanni; Wolf, Armin; Lorand, Daniel; Clemens, Andreas; Gmeiner, Benjamin. - In: BRITISH JOURNAL OF OPHTHALMOLOGY. - ISSN 0007-1161. - 107:1(2023), pp. 96-101. [10.1136/bjophthalmol-2021-319211]

Does real-time artificial intelligence-based visual pathology enhancement of three-dimensional optical coherence tomography scans optimise treatment decision in patients with nAMD? Rationale and design of the RAZORBILL study

Bandello, Francesco;
2023-01-01

Abstract

Background/rationale Artificial intelligence (AI)-based clinical decision support tools, being developed across multiple fields in medicine, need to be evaluated for their impact on the treatment and outcomes of patients as well as optimisation of the clinical workflow. The RAZORBILL study will investigate the impact of advanced AI segmentation algorithms on the disease activity assessment in patients with neovascular age-related macular degeneration (nAMD) by enriching three-dimensional (3D) retinal optical coherence tomography (OCT) scans with automated fluid and layer quantification measurements. Methods RAZORBILL is an observational, multicentre, multinational, open-label study, comprising two phases: (a) clinical data collection (phase I): an observational study design, which enforces neither strict visit schedule nor mandated treatment regimen was chosen as an appropriate design to collect data in a real-world clinical setting to enable evaluation in phase II and (b) OCT enrichment analysis (phase II): de-identified 3D OCT scans will be evaluated for disease activity. Within this evaluation, investigators will review the scans once enriched with segmentation results (i.e., highlighted and quantified pathological fluid volumes) and once in its original (i.e., non-enriched) state. This review will be performed using an integrated crossover design, where investigators are used as their own controls allowing the analysis to account for differences in expertise and individual disease activity definitions. Conclusions In order to apply novel AI tools to routine clinical care, their benefit as well as operational feasibility need to be carefully investigated. RAZORBILL will inform on the value of AI-based clinical decision support tools. It will clarify if these can be implemented in clinical treatment of patients with nAMD and whether it allows for optimisation of individualised treatment in routine clinical care.
2023
imaging
macula
neovascularisation
retina
treatment medical
File in questo prodotto:
File Dimensione Formato  
96.full.pdf

accesso aperto

Tipologia: PDF editoriale (versione pubblicata dall'editore)
Licenza: Creative commons
Dimensione 1.06 MB
Formato Adobe PDF
1.06 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/149098
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact