Pretreatment with Actinomycin D (ActD, 1 microgram/ml for 3 hr) rendered WEHI 164 tumor cells susceptible to killing by human monocytes in a 6-hr 51Cr release assay. The present study was designed to elucidate the role of reactive oxygen intermediates (ROI) and of proteolytic enzymes in this reactivity. ActD-treated WEHI 164 cells did not trigger any measurable release of O-2 or H2O2 from monocytes. Monocytes exposed to phorbol-12-myristate-13-acetate, which enhanced release of ROI, did not show augmented killing of ActD-treated tumor cells. Scavengers of oxygen metabolites (catalase, superoxide dismutase, gluthatione, and mannitol), which inhibited ROI-mediated PMA-induced monocyte cytotoxicity against erythrocytes, did not affect monocyte killing of ActD-treated WEHI 164 cells. Enzymatically generated ROI with xanthine/xanthine-oxidase glucose/glucose-oxidase did not show preferential killing of ActD-treated WEHI 164 cells. Two patients with chronic granulomatous disease had normal levels of monocyte cytotoxicity against ActD-treated tumor cells. To determine the possible role of proteolytic enzymes in mediating this reactivity, we studied various antiproteases. Organophosphorous agents (DFP and PMSF), chloromethyl-ketone derivatives of tosylamino acids (TLCK and TPCK), Actinomyces products (pepstatin and chymostatin), and the synthetic protease substrate TAME inhibited monocyte-mediated cytotoxicity against ActD-treated WEHI 164 cells. The macromolecular protease inhibitors alpha-1 antitrypsin, bovine pancreatic trypsin inhibitor (BPTI), soybean trypsin inhibitor, and the synthetic protease substrate ATEE had little effect on monocyte cytotoxicity. When monocytes were preincubated with drugs for 1 hr and washed, TLCK, TPCK, and PMSF inhibited cytolysis, whereas the less effective chymostatin and TAME and the inactive BPTI had no effect under these conditions. Inhibition by preincubation with TLCK, PMSF, and TPCK was completely reversed after 6 hr of culture. Supernatants of monocyte cultures had lytic activity against ActD-treated WEHI 164 but not against untreated cells. Antiproteases inhibited the lytic activity of monocyte supernatants. These results strongly suggest that ROI do not play a critical role in monocyte-mediated rapid killing of drug-treated tumor cells, and that proteolytic enzymes are involved in this reactivity.

Rapid killing of actinomycin D-treated tumor cells by human monocytes. II. Cytotoxicity is independent of secretion of reactive oxygen intermediates and is suppressed by protease inhibitors.

POLI , GUIDO;
1985-01-01

Abstract

Pretreatment with Actinomycin D (ActD, 1 microgram/ml for 3 hr) rendered WEHI 164 tumor cells susceptible to killing by human monocytes in a 6-hr 51Cr release assay. The present study was designed to elucidate the role of reactive oxygen intermediates (ROI) and of proteolytic enzymes in this reactivity. ActD-treated WEHI 164 cells did not trigger any measurable release of O-2 or H2O2 from monocytes. Monocytes exposed to phorbol-12-myristate-13-acetate, which enhanced release of ROI, did not show augmented killing of ActD-treated tumor cells. Scavengers of oxygen metabolites (catalase, superoxide dismutase, gluthatione, and mannitol), which inhibited ROI-mediated PMA-induced monocyte cytotoxicity against erythrocytes, did not affect monocyte killing of ActD-treated WEHI 164 cells. Enzymatically generated ROI with xanthine/xanthine-oxidase glucose/glucose-oxidase did not show preferential killing of ActD-treated WEHI 164 cells. Two patients with chronic granulomatous disease had normal levels of monocyte cytotoxicity against ActD-treated tumor cells. To determine the possible role of proteolytic enzymes in mediating this reactivity, we studied various antiproteases. Organophosphorous agents (DFP and PMSF), chloromethyl-ketone derivatives of tosylamino acids (TLCK and TPCK), Actinomyces products (pepstatin and chymostatin), and the synthetic protease substrate TAME inhibited monocyte-mediated cytotoxicity against ActD-treated WEHI 164 cells. The macromolecular protease inhibitors alpha-1 antitrypsin, bovine pancreatic trypsin inhibitor (BPTI), soybean trypsin inhibitor, and the synthetic protease substrate ATEE had little effect on monocyte cytotoxicity. When monocytes were preincubated with drugs for 1 hr and washed, TLCK, TPCK, and PMSF inhibited cytolysis, whereas the less effective chymostatin and TAME and the inactive BPTI had no effect under these conditions. Inhibition by preincubation with TLCK, PMSF, and TPCK was completely reversed after 6 hr of culture. Supernatants of monocyte cultures had lytic activity against ActD-treated WEHI 164 but not against untreated cells. Antiproteases inhibited the lytic activity of monocyte supernatants. These results strongly suggest that ROI do not play a critical role in monocyte-mediated rapid killing of drug-treated tumor cells, and that proteolytic enzymes are involved in this reactivity.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/1492
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? ND
social impact