Degeneracy is a word with two meanings. The popular usage of the word denotes deviance and decay. In scientific discourse, degeneracy refers to the idea that different pathways can lead to the same output. In the biological sciences, the concept of degeneracy has been ignored for a few key reasons. Firstly, the word “degenerate” in popular culture has negative, emotionally powerful associations that do not inspire scientists to consider its technical meaning. Secondly, the tendency of searching for single causes of natural and social phenomena means that scientists can overlook the multi-stranded relationships between cause and effect. Thirdly, degeneracy and redundancy are often confused with each other. Degeneracy refers to dissimilar structures that are functionally similar while redundancy refers to identical structures. Degeneracy can give rise to novelty in ways that redundancy cannot. From genetic codes to immunology, vaccinology and brain development, degeneracy is a crucial part of how complex systems maintain their functional integrity. This review article discusses how the scientific concept of degeneracy was imported into genetics from physics and was later introduced to immunology and neuroscience. Using examples of degeneracy in immunology, neuroscience and linguistics, we demonstrate that degeneracy is a useful way of understanding how complex systems function. Reviewing the history and theoretical scope of degeneracy allows its usefulness to be better appreciated, its coherency to be further developed, and its application to be more quickly realized.

Hidden in plain view: degeneracy in complex systems / Mason, Ph; Dominguez, D JF; Winter, B; Grignolio, A. - In: BIOSYSTEMS. - ISSN 0303-2647. - 128:(2015), pp. 1-8. [10.1016/j.biosystems.2014.12.003]

Hidden in plain view: degeneracy in complex systems

Grignolio A
Ultimo
2015-01-01

Abstract

Degeneracy is a word with two meanings. The popular usage of the word denotes deviance and decay. In scientific discourse, degeneracy refers to the idea that different pathways can lead to the same output. In the biological sciences, the concept of degeneracy has been ignored for a few key reasons. Firstly, the word “degenerate” in popular culture has negative, emotionally powerful associations that do not inspire scientists to consider its technical meaning. Secondly, the tendency of searching for single causes of natural and social phenomena means that scientists can overlook the multi-stranded relationships between cause and effect. Thirdly, degeneracy and redundancy are often confused with each other. Degeneracy refers to dissimilar structures that are functionally similar while redundancy refers to identical structures. Degeneracy can give rise to novelty in ways that redundancy cannot. From genetic codes to immunology, vaccinology and brain development, degeneracy is a crucial part of how complex systems maintain their functional integrity. This review article discusses how the scientific concept of degeneracy was imported into genetics from physics and was later introduced to immunology and neuroscience. Using examples of degeneracy in immunology, neuroscience and linguistics, we demonstrate that degeneracy is a useful way of understanding how complex systems function. Reviewing the history and theoretical scope of degeneracy allows its usefulness to be better appreciated, its coherency to be further developed, and its application to be more quickly realized.
2015
Degeneracy
Immune system
Complex systems
File in questo prodotto:
File Dimensione Formato  
Mason P.H., Domìnguez J.F., Winter B., Grignolio A._Hidden in plain view. Degeneracy in complex systems_2015.pdf

solo gestori archivio

Tipologia: PDF editoriale (versione pubblicata dall'editore)
Licenza: Copyright dell'editore
Dimensione 634.27 kB
Formato Adobe PDF
634.27 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/150516
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 43
social impact