In vitro data allow presentation of a plausible scenario for the in vivo growth, progression, and dissemination of human multiple myeloma (MM) that involves the interactions between the monoclonal B-cell clone and the bone marrow (BM) microenvironment. A large series of adhesion and extracellular matrix molecules allow trapping of circulating plasma cell precursors within the BM, and a battery of locally released cytokines promote their growth and final differentiation. Malignant B cells establish close contacts with BM stromal cells and release a host of cytokines that recruit and activate BM stromal cells and also T lymphocytes to produce other cytokines. All these cytokines might conceivably act in concert in a self-perpetuating mechanism of mutual help between malignant plasma cells and BM stromal cells to favor the progressive expansion of the malignant clone through a sort of an "avalanche effect." Also, most cytokines produced by malignant B cells, stromal cells, and activated T lymphocytes, including IL-1 beta, TNF-beta, M-CSF, IL-3, and IL-6, have osteoclast-activating properties, thus explaining why the expansion of the B-cell clone is matched by the activation and numeric increase of osteoclasts

In vitro growth of human multiple myeloma: implications for biology and therapy

GHIA , PAOLO PROSPERO;
1992-01-01

Abstract

In vitro data allow presentation of a plausible scenario for the in vivo growth, progression, and dissemination of human multiple myeloma (MM) that involves the interactions between the monoclonal B-cell clone and the bone marrow (BM) microenvironment. A large series of adhesion and extracellular matrix molecules allow trapping of circulating plasma cell precursors within the BM, and a battery of locally released cytokines promote their growth and final differentiation. Malignant B cells establish close contacts with BM stromal cells and release a host of cytokines that recruit and activate BM stromal cells and also T lymphocytes to produce other cytokines. All these cytokines might conceivably act in concert in a self-perpetuating mechanism of mutual help between malignant plasma cells and BM stromal cells to favor the progressive expansion of the malignant clone through a sort of an "avalanche effect." Also, most cytokines produced by malignant B cells, stromal cells, and activated T lymphocytes, including IL-1 beta, TNF-beta, M-CSF, IL-3, and IL-6, have osteoclast-activating properties, thus explaining why the expansion of the B-cell clone is matched by the activation and numeric increase of osteoclasts
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/1508
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 33
social impact