Tourette Syndrome (TS) is a high-incidence multifactorial neuropsychiatric disorder characterized by motor and vocal tics co-occurring with several diverse comorbidities, including obsessive-compulsive disorder and attention-deficit hyperactivity disorder. The origin of TS is multifactorial, with strong genetic, perinatal, and immunological influences. Although almost all neurotransmettitorial systems have been implicated in TS pathophysiology, a comprehensive neurophysiological model explaining the dynamics of expression and inhibition of tics is still lacking. The genesis and maintenance of motor and non-motor aspects of TS are thought to arise from functional and/or structural modifications of the basal ganglia and related circuitry. This complex wiring involves several cortical and subcortical structures whose concerted activity controls the selection of the most appropriate reflexive and habitual motor, cognitive and emotional actions. Importantly, striatal circuits exhibit bidirectional forms of synaptic plasticity that differ in many respects from hippocampal and neocortical plasticity, including sensitivity to metaplastic molecules such as dopamine. Here, we review the available evidence about structural and functional anomalies in neural circuits which have been found in TS patients. Finally, considering what is known in the field of striatal plasticity, we discuss the role of exuberant plasticity in TS, including the prospect of future pharmacological and neuromodulation avenues.

The Dysfunctional Mechanisms Throwing Tics: Structural and Functional Changes in Tourette Syndrome / Lamanna, J.; Ferro, M.; Spadini, S.; Racchetti, G.; Malgaroli, A.. - In: BEHAVIORAL SCIENCES. - ISSN 2076-328X. - 13:8(2023). [10.3390/bs13080668]

The Dysfunctional Mechanisms Throwing Tics: Structural and Functional Changes in Tourette Syndrome

Lamanna J.
Primo
;
Ferro M.
Secondo
;
Spadini S.;Malgaroli A.
Ultimo
2023-01-01

Abstract

Tourette Syndrome (TS) is a high-incidence multifactorial neuropsychiatric disorder characterized by motor and vocal tics co-occurring with several diverse comorbidities, including obsessive-compulsive disorder and attention-deficit hyperactivity disorder. The origin of TS is multifactorial, with strong genetic, perinatal, and immunological influences. Although almost all neurotransmettitorial systems have been implicated in TS pathophysiology, a comprehensive neurophysiological model explaining the dynamics of expression and inhibition of tics is still lacking. The genesis and maintenance of motor and non-motor aspects of TS are thought to arise from functional and/or structural modifications of the basal ganglia and related circuitry. This complex wiring involves several cortical and subcortical structures whose concerted activity controls the selection of the most appropriate reflexive and habitual motor, cognitive and emotional actions. Importantly, striatal circuits exhibit bidirectional forms of synaptic plasticity that differ in many respects from hippocampal and neocortical plasticity, including sensitivity to metaplastic molecules such as dopamine. Here, we review the available evidence about structural and functional anomalies in neural circuits which have been found in TS patients. Finally, considering what is known in the field of striatal plasticity, we discuss the role of exuberant plasticity in TS, including the prospect of future pharmacological and neuromodulation avenues.
2023
basal ganglia
dopamine
endocannabinoids
motor control
motor cortex
neural plasticity
striatum
tic
Tourette Syndrome
File in questo prodotto:
File Dimensione Formato  
behavsci-13-00668 (1).pdf

accesso aperto

Tipologia: PDF editoriale (versione pubblicata dall'editore)
Licenza: Creative commons
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/151027
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact