: Air leak syndromes (such as pneumomediastinum, pneumothorax, or subcutaneous emphysema) are frequent complications of acute respiratory distress syndrome (ARDS). Unfortunately, the development of air leaks is associated with worse outcomes. In addition, it has been hypothesized that the development of pneumomediastinum could be a marker of disease severity in patients with respiratory failure receiving noninvasive respiratory support or assisted ventilation. The so-called Macklin effect (or pulmonary interstitial emphysema) is the air dissection of the lung bronchovascular tree from peripheral to central airways following injury to distal alveoli. Ultimately, the progression of the Macklin effect leads to the development of pneumomediastinum, subcutaneous emphysema, or pneumothorax. The Macklin effect is identifiable on a chest computed tomography (CT) scan. The Macklin effect could be an accurate predictor of barotrauma in patients with ARDS (sensitivity = 89.2% [95% CI: 74.6-96.9]; specificity = 95.6% [95% CI: 90.6-98.4]), and may be a marker of disease severity. Accordingly, the detection of the Macklin effect on a chest CT scan could be used to select which patients with ARDS might benefit from different treatment algorithms, including advanced respiratory monitoring, early intubation, or, potentially, the institution of early extracorporeal support with or without invasive ventilation. In this video, the authors summarize the pathophysiology and potential clinical significance and applications of the Macklin effect in patients with acute respiratory failure.
Macklin Effect: From Pathophysiology to Clinical Implication / Angelini, Matteo; Belletti, Alessandro; Landoni, Giovanni; Zangrillo, Alberto; De Cobelli, Francesco; Palumbo, Diego. - In: JOURNAL OF CARDIOTHORACIC AND VASCULAR ANESTHESIA. - ISSN 1053-0770. - 38:4(2024), pp. 881-883. [10.1053/j.jvca.2023.12.025]
Macklin Effect: From Pathophysiology to Clinical Implication
Belletti, AlessandroSecondo
;Landoni, Giovanni
;Zangrillo, Alberto;De Cobelli, FrancescoPenultimo
;Palumbo, DiegoUltimo
2024-01-01
Abstract
: Air leak syndromes (such as pneumomediastinum, pneumothorax, or subcutaneous emphysema) are frequent complications of acute respiratory distress syndrome (ARDS). Unfortunately, the development of air leaks is associated with worse outcomes. In addition, it has been hypothesized that the development of pneumomediastinum could be a marker of disease severity in patients with respiratory failure receiving noninvasive respiratory support or assisted ventilation. The so-called Macklin effect (or pulmonary interstitial emphysema) is the air dissection of the lung bronchovascular tree from peripheral to central airways following injury to distal alveoli. Ultimately, the progression of the Macklin effect leads to the development of pneumomediastinum, subcutaneous emphysema, or pneumothorax. The Macklin effect is identifiable on a chest computed tomography (CT) scan. The Macklin effect could be an accurate predictor of barotrauma in patients with ARDS (sensitivity = 89.2% [95% CI: 74.6-96.9]; specificity = 95.6% [95% CI: 90.6-98.4]), and may be a marker of disease severity. Accordingly, the detection of the Macklin effect on a chest CT scan could be used to select which patients with ARDS might benefit from different treatment algorithms, including advanced respiratory monitoring, early intubation, or, potentially, the institution of early extracorporeal support with or without invasive ventilation. In this video, the authors summarize the pathophysiology and potential clinical significance and applications of the Macklin effect in patients with acute respiratory failure.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S1053077023010029-main.pdf
solo gestori archivio
Tipologia:
PDF editoriale (versione pubblicata dall'editore)
Licenza:
Copyright dell'editore
Dimensione
338.38 kB
Formato
Adobe PDF
|
338.38 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.