Generally, seafarers face a higher risk of illnesses and accidents than land workers. In most cases, there are no medical professionals on board seagoing vessels, which makes disease diagnosis even more difficult. When this occurs, onshore doctors may be able to provide medical advice through telemedicine by receiving better symptomatic and clinical details in the health abstracts of seafarers. The adoption of text mining techniques can assist in extracting diagnostic information from clinical texts. We applied lexicon sentimental analysis to explore the automatic labeling of positive and negative healthcare terms to seafarers’ text healthcare documents. This was due to the lack of experimental evaluations using computational techniques. In order to classify diseases and their associated symptoms, the LASSO regression algorithm is applied to analyze these text docu-ments. A visualization of symptomatic data frequency for each disease can be achieved by analyzing TF-IDF values. The proposed approach allows for the classification of text documents with 93.8% accuracy by using a machine learning model called LASSO regression. It is possible to classify text documents effectively with tidy text mining libraries. In addition to delivering health assistance, this method can be used to classify diseases and establish health observatories. Knowledge devel-oped in the present work will be applied to establish an Epidemiological Observatory of Seafarers’ Pathologies and Injuries. This Observatory will be a collaborative initiative of the Italian Ministry of Health, University of Camerino, and International Radio Medical Centre (C.I.R.M.), the Italian TMAS.

LASSO Regression Modeling on Prediction of Medical Terms among Seafarers’ Health Documents Using Tidy Text Mining / Chintalapudi, N.; Angeloni, U.; Battineni, G.; Di Canio, M.; Marotta, C.; Rezza, G.; Sagaro, G. G.; Silenzi, A.; Amenta, F.. - In: BIOENGINEERING. - ISSN 2306-5354. - 9:3(2022). [10.3390/bioengineering9030124]

LASSO Regression Modeling on Prediction of Medical Terms among Seafarers’ Health Documents Using Tidy Text Mining

Rezza G.;
2022-01-01

Abstract

Generally, seafarers face a higher risk of illnesses and accidents than land workers. In most cases, there are no medical professionals on board seagoing vessels, which makes disease diagnosis even more difficult. When this occurs, onshore doctors may be able to provide medical advice through telemedicine by receiving better symptomatic and clinical details in the health abstracts of seafarers. The adoption of text mining techniques can assist in extracting diagnostic information from clinical texts. We applied lexicon sentimental analysis to explore the automatic labeling of positive and negative healthcare terms to seafarers’ text healthcare documents. This was due to the lack of experimental evaluations using computational techniques. In order to classify diseases and their associated symptoms, the LASSO regression algorithm is applied to analyze these text docu-ments. A visualization of symptomatic data frequency for each disease can be achieved by analyzing TF-IDF values. The proposed approach allows for the classification of text documents with 93.8% accuracy by using a machine learning model called LASSO regression. It is possible to classify text documents effectively with tidy text mining libraries. In addition to delivering health assistance, this method can be used to classify diseases and establish health observatories. Knowledge devel-oped in the present work will be applied to establish an Epidemiological Observatory of Seafarers’ Pathologies and Injuries. This Observatory will be a collaborative initiative of the Italian Ministry of Health, University of Camerino, and International Radio Medical Centre (C.I.R.M.), the Italian TMAS.
2022
correlations
disease mapping
lasso regression
seafarers
text mining
File in questo prodotto:
File Dimensione Formato  
bioengineering-09-00124-v2.pdf

accesso aperto

Tipologia: PDF editoriale (versione pubblicata dall'editore)
Licenza: Creative commons
Dimensione 2.39 MB
Formato Adobe PDF
2.39 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/157967
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 15
social impact