Plasma membrane-associated platforms (PMAPs) form at specific sites of plasma membrane by scaffolds including ERC1 and Liprin-α1. We identify a mechanism regulating PMAPs assembly, with consequences on motility/invasion. Silencing Ser/Thr kinase DYRK3 in invasive breast cancer cells inhibits their motility and invasive capacity. Similar effects on motility were observed by increasing DYRK3 levels, while kinase-dead DYRK3 had limited effects. DYRK3 overexpression inhibits PMAPs formation and has negative effects on stability of lamellipodia and adhesions in migrating cells. Liprin-α1 depletion results in unstable lamellipodia and impaired cell motility. DYRK3 causes increased Liprin-α1 phosphorylation. Increasing levels of Liprin-α1 rescue the inhibitory effects of DYRK3 on cell spreading, suggesting that an equilibrium between Liprin-α1 and DYRK3 levels is required for lamellipodia stability and tumor cell motility. Our results show that DYRK3 is relevant to tumor cell motility, and identify a PMAP target of the kinase, highlighting a new mechanism regulating cell edge dynamics.

Dual specificity kinase DYRK3 regulates cell migration by influencing the stability of protrusions / Ramella, Martina; Ribolla, LUCREZIA MARIA; Surini, Sara; Sala, Kristyna; Tonoli, Diletta; Cioni, Jean-Michel; Kumar Rai, Arpan; Pelkmans, Lucas; DE CURTIS, Ivanmatteo. - In: ISCIENCE. - ISSN 2589-0042. - 27:4(2024). [10.1016/j.isci.2024.109440]

Dual specificity kinase DYRK3 regulates cell migration by influencing the stability of protrusions.

Lucrezia Maria Ribolla
Secondo
;
Sara Surini;Kristyna Sala;Ivan de Curtis
Ultimo
2024-01-01

Abstract

Plasma membrane-associated platforms (PMAPs) form at specific sites of plasma membrane by scaffolds including ERC1 and Liprin-α1. We identify a mechanism regulating PMAPs assembly, with consequences on motility/invasion. Silencing Ser/Thr kinase DYRK3 in invasive breast cancer cells inhibits their motility and invasive capacity. Similar effects on motility were observed by increasing DYRK3 levels, while kinase-dead DYRK3 had limited effects. DYRK3 overexpression inhibits PMAPs formation and has negative effects on stability of lamellipodia and adhesions in migrating cells. Liprin-α1 depletion results in unstable lamellipodia and impaired cell motility. DYRK3 causes increased Liprin-α1 phosphorylation. Increasing levels of Liprin-α1 rescue the inhibitory effects of DYRK3 on cell spreading, suggesting that an equilibrium between Liprin-α1 and DYRK3 levels is required for lamellipodia stability and tumor cell motility. Our results show that DYRK3 is relevant to tumor cell motility, and identify a PMAP target of the kinase, highlighting a new mechanism regulating cell edge dynamics.
2024
Cell biology; Molecular biology
File in questo prodotto:
File Dimensione Formato  
24_iScience_DYRK3.pdf

accesso aperto

Tipologia: PDF editoriale (versione pubblicata dall'editore)
Licenza: Creative commons
Dimensione 6.95 MB
Formato Adobe PDF
6.95 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/158377
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact