Plasma membrane-associated platforms (PMAPs) form at specific sites of plasma membrane by scaffolds including ERC1 and Liprin-α1. We identify a mechanism regulating PMAPs assembly, with consequences on motility/invasion. Silencing Ser/Thr kinase DYRK3 in invasive breast cancer cells inhibits their motility and invasive capacity. Similar effects on motility were observed by increasing DYRK3 levels, while kinase-dead DYRK3 had limited effects. DYRK3 overexpression inhibits PMAPs formation and has negative effects on stability of lamellipodia and adhesions in migrating cells. Liprin-α1 depletion results in unstable lamellipodia and impaired cell motility. DYRK3 causes increased Liprin-α1 phosphorylation. Increasing levels of Liprin-α1 rescue the inhibitory effects of DYRK3 on cell spreading, suggesting that an equilibrium between Liprin-α1 and DYRK3 levels is required for lamellipodia stability and tumor cell motility. Our results show that DYRK3 is relevant to tumor cell motility, and identify a PMAP target of the kinase, highlighting a new mechanism regulating cell edge dynamics.
Dual specificity kinase DYRK3 regulates cell migration by influencing the stability of protrusions / Ramella, Martina; Ribolla, LUCREZIA MARIA; Surini, Sara; Sala, Kristyna; Tonoli, Diletta; Cioni, Jean-Michel; Kumar Rai, Arpan; Pelkmans, Lucas; DE CURTIS, Ivanmatteo. - In: ISCIENCE. - ISSN 2589-0042. - 27:4(2024). [10.1016/j.isci.2024.109440]
Dual specificity kinase DYRK3 regulates cell migration by influencing the stability of protrusions.
Lucrezia Maria RibollaSecondo
;Sara Surini;Kristyna Sala;Ivan de CurtisUltimo
2024-01-01
Abstract
Plasma membrane-associated platforms (PMAPs) form at specific sites of plasma membrane by scaffolds including ERC1 and Liprin-α1. We identify a mechanism regulating PMAPs assembly, with consequences on motility/invasion. Silencing Ser/Thr kinase DYRK3 in invasive breast cancer cells inhibits their motility and invasive capacity. Similar effects on motility were observed by increasing DYRK3 levels, while kinase-dead DYRK3 had limited effects. DYRK3 overexpression inhibits PMAPs formation and has negative effects on stability of lamellipodia and adhesions in migrating cells. Liprin-α1 depletion results in unstable lamellipodia and impaired cell motility. DYRK3 causes increased Liprin-α1 phosphorylation. Increasing levels of Liprin-α1 rescue the inhibitory effects of DYRK3 on cell spreading, suggesting that an equilibrium between Liprin-α1 and DYRK3 levels is required for lamellipodia stability and tumor cell motility. Our results show that DYRK3 is relevant to tumor cell motility, and identify a PMAP target of the kinase, highlighting a new mechanism regulating cell edge dynamics.File | Dimensione | Formato | |
---|---|---|---|
24_iScience_DYRK3.pdf
accesso aperto
Tipologia:
PDF editoriale (versione pubblicata dall'editore)
Licenza:
Creative commons
Dimensione
6.95 MB
Formato
Adobe PDF
|
6.95 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.