Aim: To evaluate the corrosion resistance of nickel-titanium (NiTi) endodontic rotary instruments immersed in 5.25% sodium hypochlorite (NaOCl) solution.Methodology: The corrosion performance of NiTi instruments (S1 25 mm, ProTaper Dentsplay Maillefer, Ballaigues, Switzerland) was evaluated using commercial 5.25% NaOCl solution (pH = 12.3), and the same solution partially neutralized adding H2SO4 to reach pH = 10.1. Electrochemical measurements were carried out using a potentiostat equipped with a five-channel zero resistance ammeter (ZRA) for galvanic current measurements. The instruments were sectioned into three parts (cutting part, noncutting part and shank) and degreased with acetone and rinsing with demineralized water prior to being immersed in NaOCl solution for testing. Each set of the three parts constituted one 'virtual' instrument through the ZRA, giving access to the galvanic currents that circulate between the three parts. Nine instruments were employed to check the reproducibility of the electrochemical measurements.Results: The corrosion potential (E-corr) of the NiTi alloy reached the passive domain in approximately 20 s of immersion in the solution having a pH 10.1. After this initial period the potential remained steady, indicating that stable passivation was achieved. However, at pH 12.3 no stationary state was achieved even after 6000 s of immersion time. Thus, the alloy was not stable in this medium from a corrosion point of view.Conclusions: The corrosion resistance of NiTi alloy was enhanced by lowering the pH of NaOCl solution to 10.1, which allows the system to reach the stability domain of the passivating species TiO2 and NiO2.

The corrosion of nickel-titanium rotary endodontic instruments in sodium hypochlorite / Nóvoa, X R; Martin-Biedma, B; Varela-Patiño, P; Collazo, A; Macías-Luaces, A; Cantatore, G; Pérez, M C; Magán-Muñoz, F. - In: INTERNATIONAL ENDODONTIC JOURNAL. - ISSN 0143-2885. - 40:1(2007). [10.1111/j.1365-2591.2006.01178.x]

The corrosion of nickel-titanium rotary endodontic instruments in sodium hypochlorite

Cantatore, G
Investigation
;
2007-01-01

Abstract

Aim: To evaluate the corrosion resistance of nickel-titanium (NiTi) endodontic rotary instruments immersed in 5.25% sodium hypochlorite (NaOCl) solution.Methodology: The corrosion performance of NiTi instruments (S1 25 mm, ProTaper Dentsplay Maillefer, Ballaigues, Switzerland) was evaluated using commercial 5.25% NaOCl solution (pH = 12.3), and the same solution partially neutralized adding H2SO4 to reach pH = 10.1. Electrochemical measurements were carried out using a potentiostat equipped with a five-channel zero resistance ammeter (ZRA) for galvanic current measurements. The instruments were sectioned into three parts (cutting part, noncutting part and shank) and degreased with acetone and rinsing with demineralized water prior to being immersed in NaOCl solution for testing. Each set of the three parts constituted one 'virtual' instrument through the ZRA, giving access to the galvanic currents that circulate between the three parts. Nine instruments were employed to check the reproducibility of the electrochemical measurements.Results: The corrosion potential (E-corr) of the NiTi alloy reached the passive domain in approximately 20 s of immersion in the solution having a pH 10.1. After this initial period the potential remained steady, indicating that stable passivation was achieved. However, at pH 12.3 no stationary state was achieved even after 6000 s of immersion time. Thus, the alloy was not stable in this medium from a corrosion point of view.Conclusions: The corrosion resistance of NiTi alloy was enhanced by lowering the pH of NaOCl solution to 10.1, which allows the system to reach the stability domain of the passivating species TiO2 and NiO2.
2007
corrosion resistance
rotary endodontic instrument
sodium hypochlorite
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/158956
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 23
social impact