The cross-talk between T cells and astrocytes occurring under physiological and, even more, neuroinflammatory conditions may profoundly impact the generation of adaptive immune responses in the nervous tissue. In this study, we used a standardized in vitro co-culture assay to investigate the immunomodulatory properties of astrocytes differing for age, sex, and species. Mouse neonatal astrocytes enhanced T cell vitality but suppressed T lymphocyte proliferation in response to mitogenic stimuli or myelin antigens, regardless of the Th1, Th2 or Th17 T cell phenotype. Studies comparing glia cells from adult and neonatal animals showed that adult astrocytes were more efficient in inhibiting T lymphocyte activation than neonatal astrocytes, regardless of their sex. Differently from primary cultures, mouse and human astrocytes derived from reprogrammed fibroblasts did not interfere with T cell proliferation. Overall, we describe a standardized astrocyte-T cell interaction in vitro assay and demonstrate that primary astrocytes and iAstrocytes may differ in modulating T cell function.
iAstrocytes do not restrain T cell proliferation in vitro / Colombo, E.; De Angelis, A.; Bassani, C.; Ruffini, F.; Ottoboni, L.; Garzetti, L.; Finardi, A.; Martino, G.; Furlan, R.; Farina, C.. - In: BMC NEUROSCIENCE. - ISSN 1471-2202. - 24:1(2023). [10.1186/s12868-023-00806-3]
iAstrocytes do not restrain T cell proliferation in vitro
Colombo E.Primo
;De Angelis A.Secondo
;Martino G.;Furlan R.Penultimo
;
2023-01-01
Abstract
The cross-talk between T cells and astrocytes occurring under physiological and, even more, neuroinflammatory conditions may profoundly impact the generation of adaptive immune responses in the nervous tissue. In this study, we used a standardized in vitro co-culture assay to investigate the immunomodulatory properties of astrocytes differing for age, sex, and species. Mouse neonatal astrocytes enhanced T cell vitality but suppressed T lymphocyte proliferation in response to mitogenic stimuli or myelin antigens, regardless of the Th1, Th2 or Th17 T cell phenotype. Studies comparing glia cells from adult and neonatal animals showed that adult astrocytes were more efficient in inhibiting T lymphocyte activation than neonatal astrocytes, regardless of their sex. Differently from primary cultures, mouse and human astrocytes derived from reprogrammed fibroblasts did not interfere with T cell proliferation. Overall, we describe a standardized astrocyte-T cell interaction in vitro assay and demonstrate that primary astrocytes and iAstrocytes may differ in modulating T cell function.File | Dimensione | Formato | |
---|---|---|---|
12868_2023_Article_806.pdf
accesso aperto
Tipologia:
PDF editoriale (versione pubblicata dall'editore)
Licenza:
Creative commons
Dimensione
2.77 MB
Formato
Adobe PDF
|
2.77 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.