: Lentiviral vectors (LV) are efficient vehicles for in vivo gene delivery to the liver. LV integration into the chromatin of target cells ensures their transmission upon proliferation, thus allowing potentially life-long gene therapy following a single administration, even to young individuals. The glycoprotein of the vesicular stomatitis virus (VSV.G) is widely used to pseudotype LV, as it confers broad tropism and high stability. The baculovirus-derived GP64 envelope protein has been proposed as an alternative for in vivo liver-directed gene therapy. Here, we perform a detailed comparison of VSV.G- and GP64-pseudotyped LV in vitro and in vivo. We report that VSV.G-LV transduced hepatocytes better than GP64-LV, however the latter showed improved transduction of liver sinusoidal endothelial cells (LSEC). Combining GP64-pseudotyping with the high surface content of the phagocytosis inhibitor CD47 further enhanced LSEC transduction. Coagulation factor VIII (FVIII), the gene mutated in hemophilia A, is naturally expressed by LSEC, thus we exploited GP64-LV to deliver a FVIII transgene under the control of the endogenous FVIII promoter and achieved therapeutic amounts of FVIII and correction of hemophilia A mice.

GP64-pseudotyped lentiviral vectors target liver endothelial cells and correct hemophilia A mice / Milani, Michela; Canepari, Cesare; Assanelli, Simone; Merlin, Simone; Borroni, Ester; Starinieri, Francesco; Biffi, Mauro; Russo, Fabio; Fabiano, Anna; Zambroni, Desirèe; Annoni, Andrea; Naldini, Luigi; Follenzi, Antonia; Cantore, Alessio. - In: EMBO MOLECULAR MEDICINE. - ISSN 1757-4684. - (2024). [10.1038/s44321-024-00072-8]

GP64-pseudotyped lentiviral vectors target liver endothelial cells and correct hemophilia A mice

Milani, Michela
Primo
;
Canepari, Cesare
Secondo
;
Starinieri, Francesco;Naldini, Luigi;Cantore, Alessio
Ultimo
2024-01-01

Abstract

: Lentiviral vectors (LV) are efficient vehicles for in vivo gene delivery to the liver. LV integration into the chromatin of target cells ensures their transmission upon proliferation, thus allowing potentially life-long gene therapy following a single administration, even to young individuals. The glycoprotein of the vesicular stomatitis virus (VSV.G) is widely used to pseudotype LV, as it confers broad tropism and high stability. The baculovirus-derived GP64 envelope protein has been proposed as an alternative for in vivo liver-directed gene therapy. Here, we perform a detailed comparison of VSV.G- and GP64-pseudotyped LV in vitro and in vivo. We report that VSV.G-LV transduced hepatocytes better than GP64-LV, however the latter showed improved transduction of liver sinusoidal endothelial cells (LSEC). Combining GP64-pseudotyping with the high surface content of the phagocytosis inhibitor CD47 further enhanced LSEC transduction. Coagulation factor VIII (FVIII), the gene mutated in hemophilia A, is naturally expressed by LSEC, thus we exploited GP64-LV to deliver a FVIII transgene under the control of the endogenous FVIII promoter and achieved therapeutic amounts of FVIII and correction of hemophilia A mice.
2024
Envelope Engineering
Hemophilia A
In Vivo Gene Therapy
Lentiviral Vectors
Liver Endothelial Cells
File in questo prodotto:
File Dimensione Formato  
milani-et-al-2024-gp64-pseudotyped-lentiviral-vectors-target-liver-endothelial-cells-and-correct-hemophilia-a-mice.pdf

accesso aperto

Tipologia: PDF editoriale (versione pubblicata dall'editore)
Licenza: Copyright dell'autore
Dimensione 5.24 MB
Formato Adobe PDF
5.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/159596
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact