Every biological process depends, in some measure, on protein transport and secretion. These processes are accomplished by all cell types, but specialized cells can convert, by their differentiation program, into real protein factories. The decidualization of Endometrial Stromal Cells (EnSC) is a clear example of inducible secretory differentiation: upon hormonal stimulations, these fibroblast-like cells completely switch their phenotypes, and provide the factors needed for successful embryo implantation through a massive and efficient secretory activity. Accordingly, these cells are fundamental for human health and fertility, and defects of the decidualization program can have serious pathological implications. To understand how EnSC can build-up their secretory capacity, I decidualized them in vitro and analyzed their differentiation program with different approaches (expression analysis at transcriptome and single gene level, biochemical assays, and high-resolution microscopy). In my project, I clearly demonstrated that this secretory differentiation program is far more complex than simply building bigger organelles: ER and Golgi enlarge, as expected for a secretory cell, but some compartments are clearly prioritized, with modifications of their luminal chemical characteristics (including pH and ion concentrations). These morphological reshapings are regulated by complex transcriptional networks, which include the activation of the transcription factors CREB3L1 and CREB3L2, but not of the ER unfolded protein response. EnSC rearrangements are not limited to the secretory organelles: indeed, I observed a coordinated reshaping of all the cellular compartments, including a massive enlargement of the mitochondrial compartment. This corresponds to a complete rewiring of the energy metabolism, with a radical switch from glycolysis to mitochondrial respiration. Together, my results provide a detailed picture of how EnSCs achieve quickly and efficiently a massive secretory capacity, by careful preparation and a coordinated reorganization of all the cellular components.
Tutti i processi biologici dipendono, in qualche misura, dal trasporto e dalla secrezione delle proteine. Questi processi sono svolti da tutti i tipi cellulari, ma cellule specializzate possono convertirsi, attraverso il loro programma di differenziamento, in vere e proprie fabbriche di proteine. La decidualizzazione delle cellule endometriali stromali (EnSC) è un chiaro esempio di differenziamento secretorio inducibile: in risposta a stimolazione ormonale, queste cellule fibroblastoidi cambiano completamente il loro fenotipo, e forniscono i fattori necessari per l’impianto dell’embrione attraverso un’attività secretoria massiccia ed efficiente. Di conseguenza, queste cellule sono fondamentali per la salute e la fertilità umane, e difetti nel programma di decidualizzazione possono avere serie implicazioni patologiche. Per capire come le EnSC possano sviluppare la loro capacità secretoria, ho indotto in vitro la loro decidualizzazione e ho analizzato il programma di differenziamento con diversi approcci (analisi dell’espressione a livello di trascrittoma e di singoli geni, saggi biochimici e microscopia ad alta risoluzione). Nel mio progetto, ho dimostrato con chiarezza che questo programma di differenziamento secretorio è di gran lunga più complicato che semplicemente costruire organelli più grossi: il reticolo endoplasmico e il Golgi aumentano di volume, come atteso in una cellula secretoria, ma alcuni compartimenti sono chiaramente prioritizzati, con modificazioni delle caratteristiche chimiche del loro lume (inclusi il pH e la concentrazione di alcuni ioni). Queste modificazioni morfologiche sono regolate da complessi network trascrizionali, che includono l’attivazione dei fattori di trascrizione CREB3L1 e CREB3L2, ma non la risposta a proteine non correttamente ripiegate (UPR) del reticolo endoplasmico. I riarrangiamenti osservati nelle EnSC non sono limitati agli organelli secretori: infatti, ho osservato un rimodellamento coordinato di tutti i compartimenti cellulari, che include una massiccia espansione del compartimento mitocondriale. Questo corrisponde a una completa riorganizzazione del metabolismo cellulare, con un radicale passaggio dalla glicolisi alla respirazione mitocondriale. Collettivamente, i miei risultati forniscono una rappresentazione dettagliata di come le EnSC possano acquisire rapidamente e in modo efficiente una massiccia capacità secretoria, tramite un’attenta preparazione e una espansione coordinata di tutti i compartimenti cellulari.
Come diventare una cellula secretoria: lezioni dalla decidualizzazione delle cellule stromali endometriali / Marco Dalla Torre , 2024 Apr 16. 36. ciclo, Anno Accademico 2022/2023.
Come diventare una cellula secretoria: lezioni dalla decidualizzazione delle cellule stromali endometriali
DALLA TORRE, MARCO
2024-04-16
Abstract
Every biological process depends, in some measure, on protein transport and secretion. These processes are accomplished by all cell types, but specialized cells can convert, by their differentiation program, into real protein factories. The decidualization of Endometrial Stromal Cells (EnSC) is a clear example of inducible secretory differentiation: upon hormonal stimulations, these fibroblast-like cells completely switch their phenotypes, and provide the factors needed for successful embryo implantation through a massive and efficient secretory activity. Accordingly, these cells are fundamental for human health and fertility, and defects of the decidualization program can have serious pathological implications. To understand how EnSC can build-up their secretory capacity, I decidualized them in vitro and analyzed their differentiation program with different approaches (expression analysis at transcriptome and single gene level, biochemical assays, and high-resolution microscopy). In my project, I clearly demonstrated that this secretory differentiation program is far more complex than simply building bigger organelles: ER and Golgi enlarge, as expected for a secretory cell, but some compartments are clearly prioritized, with modifications of their luminal chemical characteristics (including pH and ion concentrations). These morphological reshapings are regulated by complex transcriptional networks, which include the activation of the transcription factors CREB3L1 and CREB3L2, but not of the ER unfolded protein response. EnSC rearrangements are not limited to the secretory organelles: indeed, I observed a coordinated reshaping of all the cellular compartments, including a massive enlargement of the mitochondrial compartment. This corresponds to a complete rewiring of the energy metabolism, with a radical switch from glycolysis to mitochondrial respiration. Together, my results provide a detailed picture of how EnSCs achieve quickly and efficiently a massive secretory capacity, by careful preparation and a coordinated reorganization of all the cellular components.File | Dimensione | Formato | |
---|---|---|---|
Marco Dalla Torre - PhD thesis -definitive version.pdf
embargo fino al 16/04/2025
Descrizione: Marco Dalla torre - PhD Thesis
Tipologia:
Tesi di dottorato
Dimensione
5.59 MB
Formato
Adobe PDF
|
5.59 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.