Patients with autoimmune polyendocrinopathy syndrome type 1 (APS-1) caused by autosomal recessive AIRE deficiency produce autoantibodies that neutralize type I interferons (IFNs)1,2, conferring a predisposition to life-threatening COVID-19 pneumonia3. Here we report that patients with autosomal recessive NIK or RELB deficiency, or a specific type of autosomal-dominant NF-κB2 deficiency, also have neutralizing autoantibodies against type I IFNs and are at higher risk of getting life-threatening COVID-19 pneumonia. In patients with autosomal-dominant NF-κB2 deficiency, these autoantibodies are found only in individuals who are heterozygous for variants associated with both transcription (p52 activity) loss of function (LOF) due to impaired p100 processing to generate p52, and regulatory (IκBδ activity) gain of function (GOF) due to the accumulation of unprocessed p100, therefore increasing the inhibitory activity of IκBδ (hereafter, p52LOF/IκBδGOF). By contrast, neutralizing autoantibodies against type I IFNs are not found in individuals who are heterozygous for NFKB2 variants causing haploinsufficiency of p100 and p52 (hereafter, p52LOF/IκBδLOF) or gain-of-function of p52 (hereafter, p52GOF/IκBδLOF). In contrast to patients with APS-1, patients with disorders of NIK, RELB or NF-κB2 have very few tissue-specific autoantibodies. However, their thymuses have an abnormal structure, with few AIRE-expressing medullary thymic epithelial cells. Human inborn errors of the alternative NF-κB pathway impair the development of AIRE-expressing medullary thymic epithelial cells, thereby underlying the production of autoantibodies against type I IFNs and predisposition to viral diseases.

Autoantibodies against type I IFNs in humans with alternative NF-κB pathway deficiency / Le Voyer, T.; Parent, A. V.; Liu, X.; Cederholm, A.; Gervais, A.; Rosain, J.; Nguyen, T.; Perez Lorenzo, M.; Rackaityte, E.; Rinchai, D.; Zhang, P.; Bizien, L.; Hancioglu, G.; Ghillani-Dalbin, P.; Charuel, J. -L.; Philippot, Q.; Gueye, M. S.; Maglorius Renkilaraj, M. R. L.; Ogishi, M.; Soudee, C.; Migaud, M.; Rozenberg, F.; Momenilandi, M.; Riller, Q.; Imberti, L.; Delmonte, O. M.; Muller, G.; Keller, B.; Orrego, J.; Franco Gallego, W. A.; Rubin, T.; Emiroglu, M.; Parvaneh, N.; Eriksson, D.; Aranda-Guillen, M.; Berrios, D. I.; Vong, L.; Katelaris, C. H.; Mustillo, P.; Raedler, J.; Bohlen, J.; Bengi Celik, J.; Astudillo, C.; Winter, S.; Boisson-Dupuis, S.; Oksenhendler, E.; Okada, S.; Caluseriu, O.; Ursini, M. V.; Ballot, E.; Lafarge, G.; Freiberger, T.; Arango-Franco, C. A.; Levy, R.; Aiuti, A.; Al-Muhsen, S.; Al-Mulla, F.; Andreakos, E.; Arias, A. A.; Feldman, H. B.; Bastard, P.; Bondarenko, A.; Borghesi, A.; Bousfiha, A. A.; Brodin, P.; Bryceson, Y.; Casari, G.; Christodoulou, J.; Colobran, R.; Condino-Neto, A.; Fellay, J.; Flores, C.; Franco, J. L.; Haerynck, F.; Halwani, R.; Hammarstrom, L.; Heath, J. R.; Hsieh, E. W. Y.; Itan, Y.; Kaja, E.; Kisand, K.; Ku, C. -L.; Ling, Y.; Lau, Y. -L.; Mansouri, D.; Meyts, I.; Milner, J. D.; Mogensen, T. H.; Novelli, A.; Novelli, G.; Okamoto, K.; Ozcelik, T.; de Diego, R. P.; Perez-Tur, J.; Perlin, D. S.; Prando, C.; Pujol, A.; Quintana-Murci, L.; Renia, L.; Resnick, I.; Rodriguez-Gallego, C.; Sancho-Shimizu, V.; Sediva, A.; Seppanen, M. R. J.; Shahrooei, M.; Shcherbina, A.; Palacin, P. S.; Pesole, G.; Spaan, A. N.; Su, H. C.; Tancevski, I.; Tayoun, A. A.; Amara, A.; Gorochov, G.; Temel, S. G.; Thorball, C.; Tiberghien, P.; Trouillet-Assant, S.; Turvey, S.; Uddin, K. M. F.; Uddin, M. J.; van de Beek, D.; Vidigal, M.; Vinh, D. C.; von Bernuth, H.; Wauters, J.; Zatz, M.; Zhang, S. -Y.; Ng, L. F. P.; Mclean, C.; Guffroy, A.; Derisi, J. L.; Yu, D.; Miller, C.; Feng, Y.; Guichard, A.; Beziat, V.; Bustamante, J.; Pan-Hammarstrom, Q.; Zhang, Y.; Rosen, L. B.; Holland, S. M.; Bosticardo, M.; Kenney, H.; Castagnoli, R.; Slade, C. A.; Boztug, K.; Mahlaoui, N.; Latour, S.; Abraham, R. S.; Lougaris, V.; Hauck, F.; Sediva, A.; Atschekzei, F.; Sogkas, G.; Poli, M. C.; Slatter, M. A.; Palterer, B.; Keller, M. D.; Pinzon-Charry, A.; Sullivan, A.; Droney, L.; Suan, D.; Wong, M.; Kane, A.; Hu, H.; Ma, C.; Grombirikova, H.; Ciznar, P.; Dalal, I.; Aladjidi, N.; Hie, M.; Lazaro, E.; Franco, J.; Keles, S.; Malphettes, M.; Pasquet, M.; Maccari, M. E.; Meinhardt, A.; Ikinciogullari, A.; Shahrooei, M.; Celmeli, F.; Frosk, P.; Goodnow, C. C.; Gray, P. E.; Belot, A.; Kuehn, H. S.; Rosenzweig, S. D.; Miyara, M.; Licciardi, F.; Servettaz, A.; Barlogis, V.; Le Guenno, G.; Herrmann, V. -M.; Kuijpers, T.; Ducoux, G.; Sarrot-Reynauld, F.; Schuetz, C.; Cunningham-Rundles, C.; Rieux-Laucat, F.; Tangye, S. G.; Sobacchi, C.; Doffinger, R.; Warnatz, K.; Grimbacher, B.; Fieschi, C.; Berteloot, L.; Bryant, V. L.; Trouillet Assant, S.; Su, H.; Neven, B.; Abel, L.; Zhang, Q.; Boisson, B.; Cobat, A.; Jouanguy, E.; Kampe, O.; Bastard, P.; Roifman, C. M.; Landegren, N.; Notarangelo, L. D.; Anderson, M. S.; Casanova, J. -L.; Puel, A.. - In: NATURE. - ISSN 0028-0836. - 623:7988(2023), pp. 803-813. [10.1038/s41586-023-06717-x]

Autoantibodies against type I IFNs in humans with alternative NF-κB pathway deficiency

Aiuti A.;Casari G.;
2023-01-01

Abstract

Patients with autoimmune polyendocrinopathy syndrome type 1 (APS-1) caused by autosomal recessive AIRE deficiency produce autoantibodies that neutralize type I interferons (IFNs)1,2, conferring a predisposition to life-threatening COVID-19 pneumonia3. Here we report that patients with autosomal recessive NIK or RELB deficiency, or a specific type of autosomal-dominant NF-κB2 deficiency, also have neutralizing autoantibodies against type I IFNs and are at higher risk of getting life-threatening COVID-19 pneumonia. In patients with autosomal-dominant NF-κB2 deficiency, these autoantibodies are found only in individuals who are heterozygous for variants associated with both transcription (p52 activity) loss of function (LOF) due to impaired p100 processing to generate p52, and regulatory (IκBδ activity) gain of function (GOF) due to the accumulation of unprocessed p100, therefore increasing the inhibitory activity of IκBδ (hereafter, p52LOF/IκBδGOF). By contrast, neutralizing autoantibodies against type I IFNs are not found in individuals who are heterozygous for NFKB2 variants causing haploinsufficiency of p100 and p52 (hereafter, p52LOF/IκBδLOF) or gain-of-function of p52 (hereafter, p52GOF/IκBδLOF). In contrast to patients with APS-1, patients with disorders of NIK, RELB or NF-κB2 have very few tissue-specific autoantibodies. However, their thymuses have an abnormal structure, with few AIRE-expressing medullary thymic epithelial cells. Human inborn errors of the alternative NF-κB pathway impair the development of AIRE-expressing medullary thymic epithelial cells, thereby underlying the production of autoantibodies against type I IFNs and predisposition to viral diseases.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/161918
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 3
social impact