To identify surface molecules that may play a role in regulating ileal Peyer's patch (PP) B cell growth, we generated monoclonal antibodies (mAbs) and then selected them for a unique reactivity with ileal PP B cells. Flow cytometric analysis identified a mAb (SIC4.8R) that labeled 97% of ileal and 50-60% of jejunal PP sIgM(+)B cells. SIC4.8R also labeled a subpopulation of cortical thymocytes but few B or T cells in other lymphoid tissues, including bone marrow. Immunohistochemistry revealed intense SIC4.8R staining of B cells in the cortex of ileal PP follicles. SIC4.8R also labeled bovine PP B cells, a murine pro-B cell line, and pre-B cells in human bone marrow. Protein chemistry revealed that a structurally similar molecular complex was expressed on sheep ileal PP B cells and thymocytes and murine pro-B cells. Addition of soluble SIC4.8R to cultured ileal PP B cells reduced apoptotic cell death, elevated proliferative responses, partially inhibited anti-Ig-induced cell death, and induced IL-4 responsiveness. in contrast, soluble SIC4.8R had an antiproliferative effect on a mouse pro-B cell line. Finally, SIC4.8R labeling declined following the stimulation of ileal PP B cells with CD40 ligand. In conclusion, the present investigation determined that SIC4.8R identified a novel molecular complex that is expressed at several stages of T cell-independent B cell development in a variety of mammalian species. This observation confirmed that PP B cells are developmentally distinct from other B cell populations in sheep and suggested that the bone marrow may not be a site of B lymphopoiesis in young lambs.

A novel molecular complex expressed on immature B cells: A possible role in T cell-independent B cell development

GHIA , PAOLO PROSPERO;
1996-01-01

Abstract

To identify surface molecules that may play a role in regulating ileal Peyer's patch (PP) B cell growth, we generated monoclonal antibodies (mAbs) and then selected them for a unique reactivity with ileal PP B cells. Flow cytometric analysis identified a mAb (SIC4.8R) that labeled 97% of ileal and 50-60% of jejunal PP sIgM(+)B cells. SIC4.8R also labeled a subpopulation of cortical thymocytes but few B or T cells in other lymphoid tissues, including bone marrow. Immunohistochemistry revealed intense SIC4.8R staining of B cells in the cortex of ileal PP follicles. SIC4.8R also labeled bovine PP B cells, a murine pro-B cell line, and pre-B cells in human bone marrow. Protein chemistry revealed that a structurally similar molecular complex was expressed on sheep ileal PP B cells and thymocytes and murine pro-B cells. Addition of soluble SIC4.8R to cultured ileal PP B cells reduced apoptotic cell death, elevated proliferative responses, partially inhibited anti-Ig-induced cell death, and induced IL-4 responsiveness. in contrast, soluble SIC4.8R had an antiproliferative effect on a mouse pro-B cell line. Finally, SIC4.8R labeling declined following the stimulation of ileal PP B cells with CD40 ligand. In conclusion, the present investigation determined that SIC4.8R identified a novel molecular complex that is expressed at several stages of T cell-independent B cell development in a variety of mammalian species. This observation confirmed that PP B cells are developmentally distinct from other B cell populations in sheep and suggested that the bone marrow may not be a site of B lymphopoiesis in young lambs.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/1639
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact