Chemotherapeutics, radiation, targeted therapeutics, and immunotherapeutics each demonstrate clinical benefits for a small subset of patients with solid malignancies. Immune cells infiltrating the tumor and the surrounding stroma play a critical role in shaping cancer progression and modulating therapy response. They do this by interacting with the other cellular and molecular components of the tumor microenvironment. Spatial multi-omics technologies are rapidly evolving. Currently, such technologies allow high-throughput RNA and protein profiling and retain geographical information about the tumor microenvironment cellular architecture and the functional phenotype of tumor, immune, and stromal cells. An in-depth spatial characterization of the heterogeneous tumor immune landscape can improve not only the prognosis but also the prediction of therapy response, directing cancer patients to more tailored and efficacious treatments. This review highlights recent advancements in spatial transcriptomics and proteomics profiling technologies and the ways these technologies are being applied for the dissection of the immune cell composition in solid malignancies in order to further both basic research in oncology and the implementation of precision treatments in the clinic.
Spatial dissection of the immune landscape of solid tumors to advance precision medicine / DI MAURO, Francesco; Arbore, Giuseppina. - In: CANCER IMMUNOLOGY RESEARCH. - ISSN 2326-6074. - (2024). [Epub ahead of print]
Spatial dissection of the immune landscape of solid tumors to advance precision medicine
Di Mauro FrancescoPrimo
Writing – Original Draft Preparation
;Arbore Giuseppina
Ultimo
Writing – Original Draft Preparation
2024-01-01
Abstract
Chemotherapeutics, radiation, targeted therapeutics, and immunotherapeutics each demonstrate clinical benefits for a small subset of patients with solid malignancies. Immune cells infiltrating the tumor and the surrounding stroma play a critical role in shaping cancer progression and modulating therapy response. They do this by interacting with the other cellular and molecular components of the tumor microenvironment. Spatial multi-omics technologies are rapidly evolving. Currently, such technologies allow high-throughput RNA and protein profiling and retain geographical information about the tumor microenvironment cellular architecture and the functional phenotype of tumor, immune, and stromal cells. An in-depth spatial characterization of the heterogeneous tumor immune landscape can improve not only the prognosis but also the prediction of therapy response, directing cancer patients to more tailored and efficacious treatments. This review highlights recent advancements in spatial transcriptomics and proteomics profiling technologies and the ways these technologies are being applied for the dissection of the immune cell composition in solid malignancies in order to further both basic research in oncology and the implementation of precision treatments in the clinic.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.