Introduction: The glucocorticoid receptor is pivotal to control corticotrophin (ACTH) secretion, and its function is closely linked to the heat shock protein 90 (HSP90) chaperone complex. Impaired sensitivity to glucocorticoid feedback is a hallmark of human corticotroph adenomas, i.e., Cushing’s disease, a disorder with few medical treatment options. Silibinin, a HSP90 inhibitor, has been studied in tumoral corticotroph cells and its use proposed in Cushing’s disease. Aim of the present study was to further investigate the effect of silibinin on human corticotroph adenomas in vitro. Methods: Seven human ACTH-secreting pituitary adenomas were established in culture and treated with 10–50 µm silibinin with/without dexamethasone for up to 72 h. ACTH medium levels were measured, and POMC and glucocorticoid receptor, i.e., NR3C1, gene expression assessed. Results: Silibinin reduced spontaneous ACTH secretion and restored sensitivity to steroid negative feedback to a different extent in individual adenomas. POMC expression was decreased in both control and dexamethasone-treated wells in specimens sensitive to silibinin. Interestingly, silibinin reduced constitutive NR3C1 expression and reversed the dexamethasone-induced inhibition. Conclusions: Our findings indicate that silibinin can inhibit ACTH synthesis and secretion in individual human corticotroph adenomas and directly affects NR3C1 gene expression. These results reveal promising effects of this HSP90 inhibitor on human corticotroph adenomas and support an innovative target treatment for patients with Cushing’s disease.

Silibinin, an HSP90 Inhibitor, on Human ACTH-Secreting Adenomas / Pecori Giraldi, Francesca; Cassarino, Maria Francesca; Sesta, Antonella; Lasio, Giovanni; Losa, Marco. - In: NEUROENDOCRINOLOGY. - ISSN 0028-3835. - 113:6(2023), pp. 606-614. [10.1159/000529710]

Silibinin, an HSP90 Inhibitor, on Human ACTH-Secreting Adenomas

Losa, Marco
Ultimo
2023-01-01

Abstract

Introduction: The glucocorticoid receptor is pivotal to control corticotrophin (ACTH) secretion, and its function is closely linked to the heat shock protein 90 (HSP90) chaperone complex. Impaired sensitivity to glucocorticoid feedback is a hallmark of human corticotroph adenomas, i.e., Cushing’s disease, a disorder with few medical treatment options. Silibinin, a HSP90 inhibitor, has been studied in tumoral corticotroph cells and its use proposed in Cushing’s disease. Aim of the present study was to further investigate the effect of silibinin on human corticotroph adenomas in vitro. Methods: Seven human ACTH-secreting pituitary adenomas were established in culture and treated with 10–50 µm silibinin with/without dexamethasone for up to 72 h. ACTH medium levels were measured, and POMC and glucocorticoid receptor, i.e., NR3C1, gene expression assessed. Results: Silibinin reduced spontaneous ACTH secretion and restored sensitivity to steroid negative feedback to a different extent in individual adenomas. POMC expression was decreased in both control and dexamethasone-treated wells in specimens sensitive to silibinin. Interestingly, silibinin reduced constitutive NR3C1 expression and reversed the dexamethasone-induced inhibition. Conclusions: Our findings indicate that silibinin can inhibit ACTH synthesis and secretion in individual human corticotroph adenomas and directly affects NR3C1 gene expression. These results reveal promising effects of this HSP90 inhibitor on human corticotroph adenomas and support an innovative target treatment for patients with Cushing’s disease.
2023
Silibinin, Heat shock protein 90, Cushing’s disease, Glucocorticoid feedback
File in questo prodotto:
File Dimensione Formato  
Neuroendocrinology+2023+silibinin.pdf

solo gestori archivio

Tipologia: PDF editoriale (versione pubblicata dall'editore)
Licenza: Copyright dell'editore
Dimensione 861.2 kB
Formato Adobe PDF
861.2 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/166676
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact