Aims: In Brugada syndrome (BrS), with spontaneous or ajmaline-induced coved ST elevation, epicardial electro-anatomic potential duration maps (epi-PDMs) were detected on a right ventricle (RV) outflow tract (RVOT), an arrhythmogenic substrate area (AS area), abolished by epicardial-radiofrequency ablation (EPI-AS-RFA). Novel CineECG, projecting 12-lead electrocardiogram (ECG) waveforms on a 3D heart model, previously localized depolarization forces in RV/RVOT in BrS patients. We evaluate 12-lead ECG and CineECG depolarization/repolarization changes in spontaneous type-1 BrS patients before/after EPI-AS-RFA, compared with normal controls. Methods and results: In 30 high-risk BrS patients (93% males, age 37 + 9 years), 12-lead ECGs and epi-PDMs were obtained at baseline, early after EPI-AS-RFA, and late follow-up (FU) (2.7–16.1 months). CineECG estimates temporo-spatial localization during depolarization (Early-QRS and Terminal-QRS) and repolarization (ST-Tpeak, Tpeak-Tend). Differences within BrS patients (baseline vs. early after EPI-AS-RFA vs. late FU) were analysed by Wilcoxon signed-rank test, while differences between BrS patients and 60 age–sexmatched normal controls were analysed by the Mann–Whitney test. In BrS patients, baseline QRS and QTc durations were longer and normalized after EPI-AS-ATC (151 ± 15 vs. 102 ± 13 ms, P < 0.001; 454 ± 40 vs. 421 ± 27 ms, P < 0.000). Baseline QRS amplitude was lower and increased at late FU (0.63 ± 0.26 vs. 0.84 ± 13 ms, P < 0.000), while Terminal-QRS amplitude decreased (0.24 ± 0.07 vs. 0.08 ± 0.03 ms, P < 0.000). At baseline, CineECG depolarization/repolarization wavefront prevalently localized in RV/RVOT (Terminal-QRS, 57%; ST-Tpeak, 100%; and Tpeak-Tend, 61%), congruent with the AS area on epi-PDM. Early after EPI-AS-RFA, RV/RVOT localization during depolarization disappeared, as Terminal-QRS prevalently localized in the left ventricle (LV, 76%), while repolarization still localized on RV/RVOT [ST-Tpeak (44%) and Tpeak-Tend (98%)]. At late FU, depolarization/ repolarization forces prevalently localized in the LV (Terminal-QRS, 94%; ST-Tpeak, 63%; Tpeak-Tend, 86%), like normal controls. Conclusion: CineECG and 12-lead ECG showed a complex temporo-spatial perturbation of both depolarization and repolarization in BrS patients, prevalently localized in RV/RVOT, progressively normalizing after epicardial ablation.
Electrocardiographic temporo-spatial assessment of depolarization and repolarization changes after epicardial arrhythmogenic substrate ablation in Brugada syndrome / Locati, E. T.; Van Dam, P. M.; Ciconte, G.; Heilbron, F.; Boonstra, M.; Vicedomini, G.; Micaglio, E.; Ćalović, Ž.; Anastasia, L.; Santinelli, V.; Pappone, C.. - In: EUROPEAN HEART JOURNAL. DIGITAL HEALTH. - ISSN 2634-3916. - 4:6(2023), pp. 473-487. [10.1093/ehjdh/ztad050]
Electrocardiographic temporo-spatial assessment of depolarization and repolarization changes after epicardial arrhythmogenic substrate ablation in Brugada syndrome
Ciconte G.Secondo
;Anastasia L.;Pappone C.
Ultimo
2023-01-01
Abstract
Aims: In Brugada syndrome (BrS), with spontaneous or ajmaline-induced coved ST elevation, epicardial electro-anatomic potential duration maps (epi-PDMs) were detected on a right ventricle (RV) outflow tract (RVOT), an arrhythmogenic substrate area (AS area), abolished by epicardial-radiofrequency ablation (EPI-AS-RFA). Novel CineECG, projecting 12-lead electrocardiogram (ECG) waveforms on a 3D heart model, previously localized depolarization forces in RV/RVOT in BrS patients. We evaluate 12-lead ECG and CineECG depolarization/repolarization changes in spontaneous type-1 BrS patients before/after EPI-AS-RFA, compared with normal controls. Methods and results: In 30 high-risk BrS patients (93% males, age 37 + 9 years), 12-lead ECGs and epi-PDMs were obtained at baseline, early after EPI-AS-RFA, and late follow-up (FU) (2.7–16.1 months). CineECG estimates temporo-spatial localization during depolarization (Early-QRS and Terminal-QRS) and repolarization (ST-Tpeak, Tpeak-Tend). Differences within BrS patients (baseline vs. early after EPI-AS-RFA vs. late FU) were analysed by Wilcoxon signed-rank test, while differences between BrS patients and 60 age–sexmatched normal controls were analysed by the Mann–Whitney test. In BrS patients, baseline QRS and QTc durations were longer and normalized after EPI-AS-ATC (151 ± 15 vs. 102 ± 13 ms, P < 0.001; 454 ± 40 vs. 421 ± 27 ms, P < 0.000). Baseline QRS amplitude was lower and increased at late FU (0.63 ± 0.26 vs. 0.84 ± 13 ms, P < 0.000), while Terminal-QRS amplitude decreased (0.24 ± 0.07 vs. 0.08 ± 0.03 ms, P < 0.000). At baseline, CineECG depolarization/repolarization wavefront prevalently localized in RV/RVOT (Terminal-QRS, 57%; ST-Tpeak, 100%; and Tpeak-Tend, 61%), congruent with the AS area on epi-PDM. Early after EPI-AS-RFA, RV/RVOT localization during depolarization disappeared, as Terminal-QRS prevalently localized in the left ventricle (LV, 76%), while repolarization still localized on RV/RVOT [ST-Tpeak (44%) and Tpeak-Tend (98%)]. At late FU, depolarization/ repolarization forces prevalently localized in the LV (Terminal-QRS, 94%; ST-Tpeak, 63%; Tpeak-Tend, 86%), like normal controls. Conclusion: CineECG and 12-lead ECG showed a complex temporo-spatial perturbation of both depolarization and repolarization in BrS patients, prevalently localized in RV/RVOT, progressively normalizing after epicardial ablation.File | Dimensione | Formato | |
---|---|---|---|
ztad050.pdf
accesso aperto
Tipologia:
PDF editoriale (versione pubblicata dall'editore)
Licenza:
Creative commons
Dimensione
1.04 MB
Formato
Adobe PDF
|
1.04 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.