Objectives: Despite the introduction of several adjuncts to improve spinal perfusion, spinal cord ischemia (SCI) remains a devastating complication of thoracoabdominal aortic aneurysm (TAAA) repair. Our aim was to assess the effects on clinical outcome of interventions triggered by motor evoked potentials (MEP) alerts. Furthermore, we want to assess whether a multimodal intraoperative neurophysiologic monitoring (IONM) protocol is helpful for stratifying patients according to the risk of SCI at the end of the vascular phase of surgery. Methods: We prospectively studied one-hundred consecutive patients who underwent TAAA repair. We applied a multimodal IONM including MEP, somatosensory evoked potentials (SEP) and peripheral nerve monitoring techniques. Signal deteriorations were classified as reversible/irreversible according to whether they recovered or not at the end of monitoring (EOM), set at the end of the vascular phase of surgery. Significant MEP changes drove a series of corrective measures aimed to improve spinal perfusion. Results: The rate of immediate postoperative motor deficits consistent with SCI was significantly higher with irreversible MEP deteriorations compared to reversible ones. The interpretation of MEP findings at the EOM led to the development of risk categories for SCI, based on the association between MEP results and motor outcome. Conclusions: Our data seem to justify interventions made to reverse MEP deterioration in order to improve the clinical outcome. A multimodal IONM protocol could improve MEP interpretation at the end of the vascular phase of surgery, supporting the surgeon in their decision-making, before concluding vascular maneuvers.
Objectives: Despite the introduction of several adjuncts to improve spinal perfusion, spinal cord ischemia (SCI) remains a devastating complication of thoracoabdominal aortic aneurysm (TAAA) repair. Our aim was to assess the effects on clinical outcome of interventions triggered by motor evoked potentials (MEP) alerts. Furthermore, we want to assess whether a multimodal intraoperative neurophysiologic monitoring (IONM) protocol is helpful for stratifying patients according to the risk of SCI at the end of the vascular phase of surgery. Methods: We prospectively studied one-hundred consecutive patients who underwent TAAA repair. We applied a multimodal IONM including MEP, somatosensory evoked potentials (SEP) and peripheral nerve monitoring techniques. Signal deteriorations were classified as reversible/irreversible according to whether they recovered or not at the end of monitoring (EOM), set at the end of the vascular phase of surgery. Significant MEP changes drove a series of corrective measures aimed to improve spinal perfusion. Results: The rate of immediate postoperative motor deficits consistent with SCI was significantly higher with irreversible MEP deteriorations compared to reversible ones. The interpretation of MEP findings at the EOM led to the development of risk categories for SCI, based on the association between MEP results and motor outcome. Conclusions: Our data seem to justify interventions made to reverse MEP deterioration in order to improve the clinical outcome. A multimodal IONM protocol could improve MEP interpretation at the end of the vascular phase of surgery, supporting the surgeon in their decision-making, before concluding vascular maneuvers.
Intraoperative neurophysiologic monitoring in thoracoabdominal aortic aneurysm surgery can provide real-time feedback for strategic decision making / Bianchi, F; Cursi, M; Caravati, H; Butera, C; Bosco, L; Monaco, F; Baccellieri, D; Bertoglio, L; Kahlberg, A; Filippi, M; Melissano, G; Chiesa, R; Carro, Ud. - In: NEUROPHYSIOLOGIE CLINIQUE-CLINICAL NEUROPHYSIOLOGY. - ISSN 0987-7053. - 52:3(2022), pp. 232-241. [10.1016/j.neucli.2021.12.006]
Intraoperative neurophysiologic monitoring in thoracoabdominal aortic aneurysm surgery can provide real-time feedback for strategic decision making.
Bosco L;Baccellieri D;Bertoglio L;Kahlberg A;Filippi M;Melissano G;Chiesa RPenultimo
;
2022-01-01
Abstract
Objectives: Despite the introduction of several adjuncts to improve spinal perfusion, spinal cord ischemia (SCI) remains a devastating complication of thoracoabdominal aortic aneurysm (TAAA) repair. Our aim was to assess the effects on clinical outcome of interventions triggered by motor evoked potentials (MEP) alerts. Furthermore, we want to assess whether a multimodal intraoperative neurophysiologic monitoring (IONM) protocol is helpful for stratifying patients according to the risk of SCI at the end of the vascular phase of surgery. Methods: We prospectively studied one-hundred consecutive patients who underwent TAAA repair. We applied a multimodal IONM including MEP, somatosensory evoked potentials (SEP) and peripheral nerve monitoring techniques. Signal deteriorations were classified as reversible/irreversible according to whether they recovered or not at the end of monitoring (EOM), set at the end of the vascular phase of surgery. Significant MEP changes drove a series of corrective measures aimed to improve spinal perfusion. Results: The rate of immediate postoperative motor deficits consistent with SCI was significantly higher with irreversible MEP deteriorations compared to reversible ones. The interpretation of MEP findings at the EOM led to the development of risk categories for SCI, based on the association between MEP results and motor outcome. Conclusions: Our data seem to justify interventions made to reverse MEP deterioration in order to improve the clinical outcome. A multimodal IONM protocol could improve MEP interpretation at the end of the vascular phase of surgery, supporting the surgeon in their decision-making, before concluding vascular maneuvers.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0987705321001325-main.pdf
solo gestori archivio
Tipologia:
PDF editoriale (versione pubblicata dall'editore)
Licenza:
Copyright dell'editore
Dimensione
515.37 kB
Formato
Adobe PDF
|
515.37 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.