Continuous wave electron paramagnetic resonance spectroscopy of chain-labeled phospholipids is used to investigate the effects of hydration on the librational oscillations and the dynamical transition of phospholipid membranes in the low-temperature range 120–270 K. Bilayers of dipalmitoylphostatidiycholine (DPPC) spin-labeled at the first acyl chain segments and at the methyl ends and prepared at full, low, and very low hydration are considered. The segmental mean-square angular amplitudes of librations, 〈α2〉, are larger in the bilayer interior than at the polar/apolar interface and larger in the fully and low hydrated than in the very low hydrated membranes. For chain segments at the beginning of the hydrocarbon region, 〈α2〉-values are markedly restricted and temperature independent in DPPC with the lowest water content, whereas they increase with temperature in the low and fully hydrated bilayers, particularly at the highest temperatures. For chain segments at the chain termini, the librational amplitudes increase progressively, first slowly and then more rapidly with temperature in bilayers at any level of hydration. From the temperature dependence of the mean-square librational amplitude, the dynamical transition is detected around 240 K at the polar/apolar interface in fully and low hydrated DPPC and at around 225 K at the inner hydrocarbon region for bilayers at any hydration condition. At the dynamical transition the bilayers cross low energy barriers of activation energy in the range 10–20 kJ/mol. The results highlight biophysical properties of DPPC bilayers at low-temperature and provide evidence of the effects of the hydration on the dynamical transition in bilayers.

Influence of hydration on segmental chain librations and dynamical transition in lipid bilayers / Aloi, E.; Bartucci, R.. - In: BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES. - ISSN 0005-2736. - 1864:1(2022), p. 183805. [10.1016/j.bbamem.2021.183805]

Influence of hydration on segmental chain librations and dynamical transition in lipid bilayers

Aloi E.;
2022-01-01

Abstract

Continuous wave electron paramagnetic resonance spectroscopy of chain-labeled phospholipids is used to investigate the effects of hydration on the librational oscillations and the dynamical transition of phospholipid membranes in the low-temperature range 120–270 K. Bilayers of dipalmitoylphostatidiycholine (DPPC) spin-labeled at the first acyl chain segments and at the methyl ends and prepared at full, low, and very low hydration are considered. The segmental mean-square angular amplitudes of librations, 〈α2〉, are larger in the bilayer interior than at the polar/apolar interface and larger in the fully and low hydrated than in the very low hydrated membranes. For chain segments at the beginning of the hydrocarbon region, 〈α2〉-values are markedly restricted and temperature independent in DPPC with the lowest water content, whereas they increase with temperature in the low and fully hydrated bilayers, particularly at the highest temperatures. For chain segments at the chain termini, the librational amplitudes increase progressively, first slowly and then more rapidly with temperature in bilayers at any level of hydration. From the temperature dependence of the mean-square librational amplitude, the dynamical transition is detected around 240 K at the polar/apolar interface in fully and low hydrated DPPC and at around 225 K at the inner hydrocarbon region for bilayers at any hydration condition. At the dynamical transition the bilayers cross low energy barriers of activation energy in the range 10–20 kJ/mol. The results highlight biophysical properties of DPPC bilayers at low-temperature and provide evidence of the effects of the hydration on the dynamical transition in bilayers.
2022
Dynamical transition
Hydration
Librational motion
Lipid bilayers
Spin-label electron paramagnetic resonance
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/171871
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact