Background: Synaptic plasticity helps in reducing the clinical expression of brain damage and represents a useful mechanism to compensate the negative impact of new brain lesions in multiple sclerosis (MS). Inflammation, altering synaptic plasticity, could negatively influence the disease course in relapsing-remitting MS (RR-MS). Objective: In the present study, we explored whether interleukin (IL)-6, a major proinflammatory cytokine involved in MS pathogenesis, alters synaptic plasticity and affects the ability to compensate for ongoing brain damage. Methods: The effect of IL-6 incubation on long-term potentiation (LTP) induction was explored in vitro, in mice hippocampal slices. We also explored the correlation between the cerebrospinal fluid (CSF) levels of this cytokine and the LTP-like effect induced by the paired associative stimulation (PAS) in a group of RR-MS patients. Finally, we examined the correlation between the CSF levels of IL-6 at the time of diagnosis and the prospective disease activity in a cohort of 150 RR-MS patients. Results: In vitro LTP induction was abolished by IL-6. Consistently, in patients with MS, a negative correlation emerged between IL-6 CSF concentrations and the effect of PAS. In MS patients, longer disease duration before diagnosis was associated with higher IL-6 CSF concentrations. In addition, elevated CSF levels of IL-6 were associated with greater clinical expression of new inflammatory brain lesions, unlike in patients with low or absent IL-6 concentrations, who had a better disease course. Conclusions: IL-6 interfering with synaptic plasticity mechanisms may impair the ability to compensate the clinical manifestation of new brain lesions in RR-MS patients.

Interleukin-6 Disrupts Synaptic Plasticity and Impairs Tissue Damage Compensation in Multiple Sclerosis / Stampanoni Bassi, M.; Iezzi, E.; Mori, F.; Simonelli, I.; Gilio, L.; Buttari, F.; Sica, F.; De Paolis, N.; Mandolesi, G.; Musella, A.; De Vito, F.; Dolcetti, E.; Bruno, A.; Furlan, R.; Finardi, A.; Marfia, G. A.; Centonze, D.; Rizzo, F. R.. - In: NEUROREHABILITATION AND NEURAL REPAIR. - ISSN 1545-9683. - 33:10(2019), pp. 825-835. [10.1177/1545968319868713]

Interleukin-6 Disrupts Synaptic Plasticity and Impairs Tissue Damage Compensation in Multiple Sclerosis

Furlan R.;
2019-01-01

Abstract

Background: Synaptic plasticity helps in reducing the clinical expression of brain damage and represents a useful mechanism to compensate the negative impact of new brain lesions in multiple sclerosis (MS). Inflammation, altering synaptic plasticity, could negatively influence the disease course in relapsing-remitting MS (RR-MS). Objective: In the present study, we explored whether interleukin (IL)-6, a major proinflammatory cytokine involved in MS pathogenesis, alters synaptic plasticity and affects the ability to compensate for ongoing brain damage. Methods: The effect of IL-6 incubation on long-term potentiation (LTP) induction was explored in vitro, in mice hippocampal slices. We also explored the correlation between the cerebrospinal fluid (CSF) levels of this cytokine and the LTP-like effect induced by the paired associative stimulation (PAS) in a group of RR-MS patients. Finally, we examined the correlation between the CSF levels of IL-6 at the time of diagnosis and the prospective disease activity in a cohort of 150 RR-MS patients. Results: In vitro LTP induction was abolished by IL-6. Consistently, in patients with MS, a negative correlation emerged between IL-6 CSF concentrations and the effect of PAS. In MS patients, longer disease duration before diagnosis was associated with higher IL-6 CSF concentrations. In addition, elevated CSF levels of IL-6 were associated with greater clinical expression of new inflammatory brain lesions, unlike in patients with low or absent IL-6 concentrations, who had a better disease course. Conclusions: IL-6 interfering with synaptic plasticity mechanisms may impair the ability to compensate the clinical manifestation of new brain lesions in RR-MS patients.
2019
disease course
hippocampus
interleukin 6 (IL-6)
long-term potentiation (LTP)
paired associative stimulation (PAS)
transcranial magnetic stimulation (TMS)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/174120
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 30
social impact