Objectives: To present the first clinical application of a novel mixed reality-based dynamic navigation (MR-DN) system in the rehabilitation of a single tooth gap. Methods: The protocol consisted of the following: (1) three-dimensional patient data acquisition using intraoral scanning (IOS) and cone-beam computed tomography (CBCT), (2) implant planning using guided surgery software, (3) holography-guided implant placement using the novel MR-DN system (ANNA®, MARS Dental, Haifa, Israel) and (4) placement accuracy verification. Results: The novel MR-DN system was safe and time-efficient, as the surgery took 30 min from anaesthesia to suturing. The accuracy of implant placement was high with minimal deviations recorded in the three planes of space compared to the presurgical planning: the error at the entry point planar distance (XY) was 0.381 mm, and the entry point planar distance (Z) was 0.173 mm, for a 3D entry point distance (En) of 0.417 mm. A 3D apex deviation (An) of 0.193 mm was registered, with an angle difference of 1.852° Conclusions: This proof-of-concept study demonstrated the clinical feasibility of MR-DN for guided implant placement in single tooth gaps. Further clinical studies on a large sample of patients are needed to confirm these positive preliminary results. Statement of clinical relevance: The use of MR-DN can change the perspectives of guided dental implant surgery as a possible alternative to the classic static and dynamic guided surgical techniques for the rehabilitation of single tooth gaps.

Implant placement using mixed reality-based dynamic navigation: A proof of concept / Shusterman, A.; Nashef, R.; Tecco, S.; Mangano, C.; Mangano, F.. - In: JOURNAL OF DENTISTRY. - ISSN 0300-5712. - 149:(2024). [10.1016/j.jdent.2024.105256]

Implant placement using mixed reality-based dynamic navigation: A proof of concept

Tecco S.;
2024-01-01

Abstract

Objectives: To present the first clinical application of a novel mixed reality-based dynamic navigation (MR-DN) system in the rehabilitation of a single tooth gap. Methods: The protocol consisted of the following: (1) three-dimensional patient data acquisition using intraoral scanning (IOS) and cone-beam computed tomography (CBCT), (2) implant planning using guided surgery software, (3) holography-guided implant placement using the novel MR-DN system (ANNA®, MARS Dental, Haifa, Israel) and (4) placement accuracy verification. Results: The novel MR-DN system was safe and time-efficient, as the surgery took 30 min from anaesthesia to suturing. The accuracy of implant placement was high with minimal deviations recorded in the three planes of space compared to the presurgical planning: the error at the entry point planar distance (XY) was 0.381 mm, and the entry point planar distance (Z) was 0.173 mm, for a 3D entry point distance (En) of 0.417 mm. A 3D apex deviation (An) of 0.193 mm was registered, with an angle difference of 1.852° Conclusions: This proof-of-concept study demonstrated the clinical feasibility of MR-DN for guided implant placement in single tooth gaps. Further clinical studies on a large sample of patients are needed to confirm these positive preliminary results. Statement of clinical relevance: The use of MR-DN can change the perspectives of guided dental implant surgery as a possible alternative to the classic static and dynamic guided surgical techniques for the rehabilitation of single tooth gaps.
2024
Accuracy
Cone beam computed tomography
Guided implant surgery
Hologram
Intraoral scanner
Mixed reality-based dynamic navigation
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0300571224004251-main.pdf

accesso aperto

Tipologia: PDF editoriale (versione pubblicata dall'editore)
Licenza: Creative commons
Dimensione 14.22 MB
Formato Adobe PDF
14.22 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/183791
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact