: Human TENT5 family comprises four members (A-D) associated with different diseases of secretory cells. Homozygous mutations in TENT5A cause a rare form of osteogenesis imperfecta due to impaired collagen deposition by osteoblasts. TENT5C is frequently mutated or deleted in patients with multiple myeloma, the cancer of antibody-secreting plasma cells, and TENT5D alterations result in male infertility. TENT5 members are noncanonical poly(A)polymerases that selectively stabilize mRNAs encoding endoplasmic reticulum-imported proteins, thus promoting the expression of secretory cargoes and proteins involved in folding, glycosylation, and trafficking along the secretory apparatus. This specificity has been proposed to be linked to TENT5 localization at the membrane of the endoplasmic reticulum, thanks to their interaction with transmembrane FNDC3 proteins. Recently, key roles of TENT5 proteins have been described in cancer, bone homeostasis, immunity, stemness, and fertility. This review will comprehensively analyze the identified cellular functions of this novel family of secretory tuners in physiological and pathological conditions, highlighting the proposed molecular mechanisms and the remaining open questions.

TENT5/FAM46: An Enigmatic Family of Secretory Tuners / Lacidogna, Daniel; Pennacchio, Sara; Milan, Enrico. - In: TRAFFIC. - ISSN 1600-0854. - 26:4-6(2025). [10.1111/tra.70011]

TENT5/FAM46: An Enigmatic Family of Secretory Tuners

Milan, Enrico
Ultimo
2025-01-01

Abstract

: Human TENT5 family comprises four members (A-D) associated with different diseases of secretory cells. Homozygous mutations in TENT5A cause a rare form of osteogenesis imperfecta due to impaired collagen deposition by osteoblasts. TENT5C is frequently mutated or deleted in patients with multiple myeloma, the cancer of antibody-secreting plasma cells, and TENT5D alterations result in male infertility. TENT5 members are noncanonical poly(A)polymerases that selectively stabilize mRNAs encoding endoplasmic reticulum-imported proteins, thus promoting the expression of secretory cargoes and proteins involved in folding, glycosylation, and trafficking along the secretory apparatus. This specificity has been proposed to be linked to TENT5 localization at the membrane of the endoplasmic reticulum, thanks to their interaction with transmembrane FNDC3 proteins. Recently, key roles of TENT5 proteins have been described in cancer, bone homeostasis, immunity, stemness, and fertility. This review will comprehensively analyze the identified cellular functions of this novel family of secretory tuners in physiological and pathological conditions, highlighting the proposed molecular mechanisms and the remaining open questions.
2025
FAM46
TENT5
endoplasmic reticulum
fertility
multiple myeloma
osteogenesis imperfecta
poly(A)polymerase
secretion
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/184776
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact