SARS-CoV-2 infection poses a significant risk increase for adverse pregnancy outcomes both from maternal and fetal sides. A recent publication in BMC Pregnancy and Childbirth presented a machine learning algorithm to predict this risk. This commentary will discuss potential implications and applications of this study for future global health policies.
Commentary: Predicting adverse outcomes in pregnant patients positive for SARS-CoV-2 by a machine learning approach / Salmeri, N.; Candiani, M.; Cavoretto, P. I.. - In: BMC PREGNANCY AND CHILDBIRTH. - ISSN 1471-2393. - 23:1(2023). [10.1186/s12884-023-05864-3]
Commentary: Predicting adverse outcomes in pregnant patients positive for SARS-CoV-2 by a machine learning approach
Salmeri N.Primo
;Candiani M.Secondo
;Cavoretto P. I.
Ultimo
2023-01-01
Abstract
SARS-CoV-2 infection poses a significant risk increase for adverse pregnancy outcomes both from maternal and fetal sides. A recent publication in BMC Pregnancy and Childbirth presented a machine learning algorithm to predict this risk. This commentary will discuss potential implications and applications of this study for future global health policies.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
unpaywall-bitstream-460537868.pdf
accesso aperto
Tipologia:
PDF editoriale (versione pubblicata dall'editore)
Licenza:
Creative commons
Dimensione
752.7 kB
Formato
Adobe PDF
|
752.7 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


