Despite effective antiviral drugs that have emerged to combat SARS-CoV-2 infections, novel therapeutic strategies are required to better address the ongoing and future evolutions of the virus. Targeting viral proteases, such as the main protease (Mpro), remains a promising approach. Here, we present a rapid and sensitive luminescence-based reporter system, the i-NSP4/5-Gluc2, to assess Mpro activity. This system employs Gaussia luciferase (Gluc) fused to a pro-interleukin 1β (pro-IL-1β) fragment containing a specific Mpro cleavage site. Upon Mpro cleavage, Gluc is released and secreted, generating a luminescent signal outside the cells. By optimizing the system's design and experimental conditions, we achieved high sensitivity and specificity. The i-NSP4/5-Gluc2 system was validated using the Mpro inhibitor Nirmatrelvir and successfully identified potential Mpro inhibitors from a small library of 46 compounds, as proof of concept. Notably, 13 out of 14 new compounds identified by the i-NSP4/5-Gluc2 assay exhibited potent antiviral activity against live SARS-CoV-2, highlighting the system's accuracy and predictive power. This BSL2-compatible, high-throughput approach facilitates rapid and efficient screening of antiviral compounds, accelerating the development of effective therapeutics against SARS-CoV-2 and future viral pandemics.

A rapid and robust luciferase-based reporter system to assess SARS-CoV-2 protease activity / Lucini Paioni, A.; Donnici, L.; Nodari, R.; Longo Minnolo, M.; Ferraro, A.; Alberico, A.; Brindisi, M.; Mejias Perez, E.; Keppler, O. T.; Summa, V.; Guidotti, L. G.; Albanese, M.; De Francesco, R.. - In: VIROLOGY. - ISSN 1096-0341. - 611:(2025), p. 110659. [10.1016/j.virol.2025.110659]

A rapid and robust luciferase-based reporter system to assess SARS-CoV-2 protease activity

Brindisi M.;Guidotti L. G.;
2025-01-01

Abstract

Despite effective antiviral drugs that have emerged to combat SARS-CoV-2 infections, novel therapeutic strategies are required to better address the ongoing and future evolutions of the virus. Targeting viral proteases, such as the main protease (Mpro), remains a promising approach. Here, we present a rapid and sensitive luminescence-based reporter system, the i-NSP4/5-Gluc2, to assess Mpro activity. This system employs Gaussia luciferase (Gluc) fused to a pro-interleukin 1β (pro-IL-1β) fragment containing a specific Mpro cleavage site. Upon Mpro cleavage, Gluc is released and secreted, generating a luminescent signal outside the cells. By optimizing the system's design and experimental conditions, we achieved high sensitivity and specificity. The i-NSP4/5-Gluc2 system was validated using the Mpro inhibitor Nirmatrelvir and successfully identified potential Mpro inhibitors from a small library of 46 compounds, as proof of concept. Notably, 13 out of 14 new compounds identified by the i-NSP4/5-Gluc2 assay exhibited potent antiviral activity against live SARS-CoV-2, highlighting the system's accuracy and predictive power. This BSL2-compatible, high-throughput approach facilitates rapid and efficient screening of antiviral compounds, accelerating the development of effective therapeutics against SARS-CoV-2 and future viral pandemics.
2025
Antiviral drugs
Main protease (Mpro/3CLpro)
Protease inhibitors
SARS-CoV-2
SARS-CoV-2 reporter
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/190396
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact