: The aorta and aortic wall have a complex biological system of structural, biochemical, biomolecular, and hemodynamic elements. Arterial stiffness could be considered a manifestation of wall structural and functional variations, and it has been revealed to have a strong connection with aortopathies and be a predictor of cardiovascular risk, especially in patients affected by hypertension, diabetes mellitus, and nephropathy. Stiffness affects the function of different organs, especially the brain, kidneys, and heart, promoting remodeling of small arteries and endothelial dysfunction. This parameter could be easily evaluated using different methods, but pulse-wave velocity (PWV), the speed of transmission of arterial pressure waves, is considered the gold standard for a good and precise assessment. An increased PWV value indicates an elevated level of aortic stiffness because of the decline in elastin synthesis and activation of proteolysis and the increase in fibrosis that contributes to parietal rigidity. Higher values of PWV could also be found in some genetic diseases, such as Marfan syndrome (MFS) or Loeys-Dietz syndrome (LDS). Aortic stiffness has emerged as a major new cardiovascular disease (CVD) risk factor, and its evaluation using PWV could be very useful to identify patients with a high cardiovascular risk, giving some important prognostic information but also being used to value the benefits of therapeutic strategies.

Aortopathies: From Etiology to the Role of Arterial Stiffness / Bonfioli, Giovanni Battista; Rodella, Luca; Rosati, Roberta; Carrozza, Alberto; Metra, Marco; Vizzardi, Enrico. - In: JOURNAL OF CLINICAL MEDICINE. - ISSN 2077-0383. - 12:12(2023). [10.3390/jcm12123949]

Aortopathies: From Etiology to the Role of Arterial Stiffness

Metra, Marco
Penultimo
;
2023-01-01

Abstract

: The aorta and aortic wall have a complex biological system of structural, biochemical, biomolecular, and hemodynamic elements. Arterial stiffness could be considered a manifestation of wall structural and functional variations, and it has been revealed to have a strong connection with aortopathies and be a predictor of cardiovascular risk, especially in patients affected by hypertension, diabetes mellitus, and nephropathy. Stiffness affects the function of different organs, especially the brain, kidneys, and heart, promoting remodeling of small arteries and endothelial dysfunction. This parameter could be easily evaluated using different methods, but pulse-wave velocity (PWV), the speed of transmission of arterial pressure waves, is considered the gold standard for a good and precise assessment. An increased PWV value indicates an elevated level of aortic stiffness because of the decline in elastin synthesis and activation of proteolysis and the increase in fibrosis that contributes to parietal rigidity. Higher values of PWV could also be found in some genetic diseases, such as Marfan syndrome (MFS) or Loeys-Dietz syndrome (LDS). Aortic stiffness has emerged as a major new cardiovascular disease (CVD) risk factor, and its evaluation using PWV could be very useful to identify patients with a high cardiovascular risk, giving some important prognostic information but also being used to value the benefits of therapeutic strategies.
2023
aorta
aortopathies
arterial stiffness
genetics
heritable connective tissue disorders
pulse wave velocity
File in questo prodotto:
File Dimensione Formato  
jcm-12-03949.pdf

accesso aperto

Tipologia: PDF editoriale (versione pubblicata dall'editore)
Licenza: Creative commons
Dimensione 1.39 MB
Formato Adobe PDF
1.39 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/193788
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 9
social impact