Vasostatins (VSs), i.e. the main biologically active peptides generated by the proteolytic processing of chromogranin A (CGA) N-terminus, exert negative inotropism in vertebrate hearts. Here, using isolated working eel (Anguilla anguilla) and frog (Rana esculenta) heart preparations, we have studied the role of the cytoskeleton in the VSs-mediated inotropic response. In both eel and frog hearts, VSs-mediated-negative inotropy was abolished by treatment with inhibitors of cytoskeleton reorganization, such as cytochalasin-D (eel: 10 nM; frog: 1 nM), an inhibitor of actin polymerisation, wortmannin (0.01 nM), an inhibitor of PI3-kinase (PI3-K)/protein kinase B (Akt) signal-transduction cascade, butanedione 2-monoxime (BDM) (eel: 100 nM; frog: 10 nM), an antagonist of myosin ATPase, and N-(6-aminohexil)-5-chloro-1-naphthalenesulfonamide (W7) (eel: 100 nM; frog: I nM), a calcium-calmodulin antagonist. These results demonstrate that changes in cytoskeletal dynamics play a crucial role in the negative inotropic influence of VSs on eel and frog hearts. (c) 2006 Elsevier B.V. All rights reserved.

Crucial role of cytoskeleton reorganization in the negative inotropic effect of chromogranin A-derived peptides in eel and frog hearts

CORTI , ANGELO;
2007-01-01

Abstract

Vasostatins (VSs), i.e. the main biologically active peptides generated by the proteolytic processing of chromogranin A (CGA) N-terminus, exert negative inotropism in vertebrate hearts. Here, using isolated working eel (Anguilla anguilla) and frog (Rana esculenta) heart preparations, we have studied the role of the cytoskeleton in the VSs-mediated inotropic response. In both eel and frog hearts, VSs-mediated-negative inotropy was abolished by treatment with inhibitors of cytoskeleton reorganization, such as cytochalasin-D (eel: 10 nM; frog: 1 nM), an inhibitor of actin polymerisation, wortmannin (0.01 nM), an inhibitor of PI3-kinase (PI3-K)/protein kinase B (Akt) signal-transduction cascade, butanedione 2-monoxime (BDM) (eel: 100 nM; frog: 10 nM), an antagonist of myosin ATPase, and N-(6-aminohexil)-5-chloro-1-naphthalenesulfonamide (W7) (eel: 100 nM; frog: I nM), a calcium-calmodulin antagonist. These results demonstrate that changes in cytoskeletal dynamics play a crucial role in the negative inotropic influence of VSs on eel and frog hearts. (c) 2006 Elsevier B.V. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/2914
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact