The trigger that leads to the pathogenesis of type 1 diabetes is currently unknown. It is well established that the pathophysiology of the disease is biphasic. In the first stage, leukocytes infiltrate the pancreatic islets in a response that does not cause damage. In the second phase, which occurs only in diabetes-prone individuals and strains, autoreactive T cells acquire aggressive potential and destroy the majority of the pancreatic islets. Rodents and humans exhibit a physiological ripple of apoptotic beta-cell death shortly after birth, which induces an adaptive autoimmune response towards islet-antigens, both in diabetes-prone non-obese diabetic (NOD) mice and in mice that do not develop diabetes. Here, we propose that the early T cell-mediated autoimmune response towards islet-antigens is physiological, purposeful and beneficial.
Beneficial autoimmunity in Type 1 diabetes mellitus
RONCAROLO , MARIA GRAZIA;
2005-01-01
Abstract
The trigger that leads to the pathogenesis of type 1 diabetes is currently unknown. It is well established that the pathophysiology of the disease is biphasic. In the first stage, leukocytes infiltrate the pancreatic islets in a response that does not cause damage. In the second phase, which occurs only in diabetes-prone individuals and strains, autoreactive T cells acquire aggressive potential and destroy the majority of the pancreatic islets. Rodents and humans exhibit a physiological ripple of apoptotic beta-cell death shortly after birth, which induces an adaptive autoimmune response towards islet-antigens, both in diabetes-prone non-obese diabetic (NOD) mice and in mice that do not develop diabetes. Here, we propose that the early T cell-mediated autoimmune response towards islet-antigens is physiological, purposeful and beneficial.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.