Severe combined immunodeficient mice transplanted with human organs (SCID-hu mice), provide a unique in vivo model for studying human intrathymic T cell selection and development of tolerance. In vivo administration of staphylococcal enterotoxin B (SEB) to SCID-hu mice causes intrathymic clonal deletion of SEB-specific V beta(+) T cells that occurs already at the immature CD4(+)8(+) double positive stage. The expression of activation markers such as CD25, CD71, and HLA-DR was specifically increased on V beta(+) T cells responding to SEB. The remaining SEB-specific human T cells that had not been deleted in vivo failed to proliferate when rechallenged with SEB in vitro. These SEB-specific T cells that were rendered anergic in vivo had a unique cytokine production profile. They failed to produce IL-2, which correlated with the lack of proliferation of these cells. In addition, they failed to produce TNF-alpha. However, the anergized T cells synthesized considerable amounts of IFN-gamma, granulocyte-macrophage CSF and IL-10 after SEB stimulation. This clonal anergy can be completely reversed in vitro by stimulating the SEB-specific cells in the presence of exogenous IL-2 or by triggering of the CD28/CTLA-4 activation pathway. Under these stimulation conditions, anergic T cells produced levels of IL-2 and TNF-alpha that were comparable to their non-anergized counterparts, whereas the levels of granulocyte-macrophage CSF, IL-10 and IFN-gamma production were even higher. Collectively, these data demonstrate that in vivo administration of SEB to SCID-hu mice leads to activation, deletion, and anergy of SEB-specific human thymocytes and that the production of IL-2 and TNF-alpha is selectively switched off in these anergic T cells.

UNIQUE CYTOKINE PRODUCTION PROFILE OF ANERGIC HUMAN T-CELLS IN SCID-HU MICE AFTER STAPHYLOCOCCAL-ENTEROTOXIN-B ADMINISTRATION

RONCAROLO , MARIA GRAZIA
1995

Abstract

Severe combined immunodeficient mice transplanted with human organs (SCID-hu mice), provide a unique in vivo model for studying human intrathymic T cell selection and development of tolerance. In vivo administration of staphylococcal enterotoxin B (SEB) to SCID-hu mice causes intrathymic clonal deletion of SEB-specific V beta(+) T cells that occurs already at the immature CD4(+)8(+) double positive stage. The expression of activation markers such as CD25, CD71, and HLA-DR was specifically increased on V beta(+) T cells responding to SEB. The remaining SEB-specific human T cells that had not been deleted in vivo failed to proliferate when rechallenged with SEB in vitro. These SEB-specific T cells that were rendered anergic in vivo had a unique cytokine production profile. They failed to produce IL-2, which correlated with the lack of proliferation of these cells. In addition, they failed to produce TNF-alpha. However, the anergized T cells synthesized considerable amounts of IFN-gamma, granulocyte-macrophage CSF and IL-10 after SEB stimulation. This clonal anergy can be completely reversed in vitro by stimulating the SEB-specific cells in the presence of exogenous IL-2 or by triggering of the CD28/CTLA-4 activation pathway. Under these stimulation conditions, anergic T cells produced levels of IL-2 and TNF-alpha that were comparable to their non-anergized counterparts, whereas the levels of granulocyte-macrophage CSF, IL-10 and IFN-gamma production were even higher. Collectively, these data demonstrate that in vivo administration of SEB to SCID-hu mice leads to activation, deletion, and anergy of SEB-specific human thymocytes and that the production of IL-2 and TNF-alpha is selectively switched off in these anergic T cells.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/2943
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 20
social impact