"BACKGROUND: Astrocytes respond to local insults within the brain and the spinal cord with important changes in their phenotype. This process, overall known as "activation", is observed upon proinflammatory stimulation and leads astrocytes to acquire either a detrimental phenotype, thereby contributing to the neurodegenerative process, or a protective phenotype, thus supporting neuronal survival. Within the mechanisms responsible for inflammatory neurodegeneration, oxidative stress plays a major role and has recently been recognized to be heavily influenced by changes in cytosolic iron levels. In this work, we investigated how activation affects the competence of astrocytes to handle iron overload and the ensuing oxidative stress.. METHODS:. Cultures of pure cortical astrocytes were preincubated with proinflammatory cytokines (interleukin-1β and tumor necrosis factor α) or conditioned medium from lipopolysaccharide-activated microglia to promote activation and then exposed to a protocol of iron overload.. RESULTS:. We demonstrate that activated astrocytes display an efficient protection against iron-mediated oxidative stress and cell death. Based on this evidence, we performed a comprehensive biochemical and molecular analysis, including a transcriptomic approach, to identify the molecular basis of this resistance.. CONCLUSIONS:. We propose the protective phenotype acquired after activation not to involve the most common astrocytic antioxidant pathway, based on the Nrf2 transcription factor, but to result from a complex change in the expression and activity of several genes involved in the control of cellular redox state."

Astrocytes acquire resistance to iron-dependent oxidative stress upon proinflammatory activation

CODAZZI , FRANCA;GROHOVAZ , FABIO;
2013-01-01

Abstract

"BACKGROUND: Astrocytes respond to local insults within the brain and the spinal cord with important changes in their phenotype. This process, overall known as "activation", is observed upon proinflammatory stimulation and leads astrocytes to acquire either a detrimental phenotype, thereby contributing to the neurodegenerative process, or a protective phenotype, thus supporting neuronal survival. Within the mechanisms responsible for inflammatory neurodegeneration, oxidative stress plays a major role and has recently been recognized to be heavily influenced by changes in cytosolic iron levels. In this work, we investigated how activation affects the competence of astrocytes to handle iron overload and the ensuing oxidative stress.. METHODS:. Cultures of pure cortical astrocytes were preincubated with proinflammatory cytokines (interleukin-1β and tumor necrosis factor α) or conditioned medium from lipopolysaccharide-activated microglia to promote activation and then exposed to a protocol of iron overload.. RESULTS:. We demonstrate that activated astrocytes display an efficient protection against iron-mediated oxidative stress and cell death. Based on this evidence, we performed a comprehensive biochemical and molecular analysis, including a transcriptomic approach, to identify the molecular basis of this resistance.. CONCLUSIONS:. We propose the protective phenotype acquired after activation not to involve the most common astrocytic antioxidant pathway, based on the Nrf2 transcription factor, but to result from a complex change in the expression and activity of several genes involved in the control of cellular redox state."
2013
Astrocyte activation; Oxidative stress; Iron; Cytokines; Nrf2; Microglia
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/47638
Citazioni
  • ???jsp.display-item.citation.pmc??? 16
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 26
social impact