MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression by repressing translation of target cellular transcripts. Increasing evidence indicates that miRNAs have distinct expression profiles and play crucial roles in numerous cellular processes, although the extent of miRNA regulation is not well known. By challenging mice with lentiviral vectors encoding target sequences of endogenous miRNAs, we show the efficiency of miRNAs in sharply segregating gene expression among different tissues. Transgene expression from vectors incorporating target sequences for mir-142-3p was effectively suppressed in intravascular and extravascular hematopoietic lineages, whereas expression was maintained in nonhematopoietic cells. This expression profile, which could not be attained until now, enabled stable gene transfer in immunocompetent mice, thus overcoming a major hurdle to successful gene therapy. Our results provide novel in situ evidence of miRNA regulation and demonstrate a new paradigm in vector design with applications for genetic engineering and therapeutic gene transfer.

Endogenous microRNA Regulation Suppresses Transgene Expression in Hematopoietic Lineages and Enables Stable Gene Transfer

NALDINI, LUIGI
Ultimo
2006-01-01

Abstract

MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression by repressing translation of target cellular transcripts. Increasing evidence indicates that miRNAs have distinct expression profiles and play crucial roles in numerous cellular processes, although the extent of miRNA regulation is not well known. By challenging mice with lentiviral vectors encoding target sequences of endogenous miRNAs, we show the efficiency of miRNAs in sharply segregating gene expression among different tissues. Transgene expression from vectors incorporating target sequences for mir-142-3p was effectively suppressed in intravascular and extravascular hematopoietic lineages, whereas expression was maintained in nonhematopoietic cells. This expression profile, which could not be attained until now, enabled stable gene transfer in immunocompetent mice, thus overcoming a major hurdle to successful gene therapy. Our results provide novel in situ evidence of miRNA regulation and demonstrate a new paradigm in vector design with applications for genetic engineering and therapeutic gene transfer.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/5802
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 405
  • ???jsp.display-item.citation.isi??? 393
social impact