Systemic light chain (AL) amyloidosis is caused by the clonal production of an unstable immunoglobulin light chain (LC), which affects organ function systemically. Although pathogenic LCs have been characterized biochemically, little is known about the biology of amyloidogenic plasma cells (PCs). Intrigued by the unique response rates of AL amyloidosis patients to the first-in-class proteasome inhibitor (PI) bortezomib, we purified and investigated patient-derived AL PCs, in comparison with primary multiple myeloma (MM) PCs, the prototypical PI-responsive cells. Functional, biochemical, and morphological characterization revealed an unprecedented intrinsic sensitivity of ALPCs to PIs, even higher than that of MM PCs, associated with distinctive organellar features and expression patterns indicative of cellular stress. These consisted of expanded endoplasmic reticulum(ER), perinuclear mitochondria, anda higher abundance of stress related transcripts, and were consistent with reduced autophagic control of organelle homeostasis. To test whether PI sensitivity stems from AL LC production, we engineered PC lines that can be induced to express amyloidogenic and nonamyloidogenic LCs, and found that AL LC expression alters cell growth and proteostasis and confers PI sensitivity. Our study discloses amyloidogenic LC production as an intrinsic PC stressor, and identifies stress-responsive pathways as novel potential therapeutic targets. Moreover,wecontribute a cellular disease model to dissect the biology of ALPCs.

The amyloidogenic light chain is a stressor that sensitizes plasma cells to proteasome inhibitor toxicity

Milan, Enrico;Ciceri, Fabio;Cenci, Simone
Ultimo
2017-01-01

Abstract

Systemic light chain (AL) amyloidosis is caused by the clonal production of an unstable immunoglobulin light chain (LC), which affects organ function systemically. Although pathogenic LCs have been characterized biochemically, little is known about the biology of amyloidogenic plasma cells (PCs). Intrigued by the unique response rates of AL amyloidosis patients to the first-in-class proteasome inhibitor (PI) bortezomib, we purified and investigated patient-derived AL PCs, in comparison with primary multiple myeloma (MM) PCs, the prototypical PI-responsive cells. Functional, biochemical, and morphological characterization revealed an unprecedented intrinsic sensitivity of ALPCs to PIs, even higher than that of MM PCs, associated with distinctive organellar features and expression patterns indicative of cellular stress. These consisted of expanded endoplasmic reticulum(ER), perinuclear mitochondria, anda higher abundance of stress related transcripts, and were consistent with reduced autophagic control of organelle homeostasis. To test whether PI sensitivity stems from AL LC production, we engineered PC lines that can be induced to express amyloidogenic and nonamyloidogenic LCs, and found that AL LC expression alters cell growth and proteostasis and confers PI sensitivity. Our study discloses amyloidogenic LC production as an intrinsic PC stressor, and identifies stress-responsive pathways as novel potential therapeutic targets. Moreover,wecontribute a cellular disease model to dissect the biology of ALPCs.
2017
Amyloidosis; Bortezomib; Endoplasmic Reticulum; Female; Humans; Immunoglobulin Light Chains; Male; Mitochondria; Multiple Myeloma; Plasma Cells; Proteasome Inhibitors; Immunology; Biochemistry; Hematology; Cell Biology
File in questo prodotto:
File Dimensione Formato  
blood730978.pdf

solo gestori archivio

Tipologia: PDF editoriale (versione pubblicata dall'editore)
Licenza: Copyright dell'editore
Dimensione 2.61 MB
Formato Adobe PDF
2.61 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/61226
Citazioni
  • ???jsp.display-item.citation.pmc??? 20
  • Scopus 72
  • ???jsp.display-item.citation.isi??? 64
social impact