High-mobility group box 1 (HMGB1) protein is a multifunctional cytokine involved in inflammatory responses and tissue repair. In this study, it was examined whether HMGB1 plays a role in skin wound repair both in normoglycemic and diabetic mice. HMGB1 was detected in the nucleus of skin cells, and accumulated in the cytoplasm of epidermal cells in the wounded skin. Diabetic human and mouse skin showed more reduced HMGB1 levels than their normoglycemic counterparts. Topical application of HMGB1 to the wounds of diabetic mice enhanced arteriole density, granulation tissue deposition, and accelerated wound healing. In contrast, HMGB1 had no effect in normoglycemic mouse skin wounds, where endogenous HMGB1 levels may be adequate for optimal wound closure. Accordingly, inhibition of endogenous HMGB1 impaired wound healing in normal mice but had no effect in diabetic mice. Finally, HMGB1 had a chemotactic effect on skin fibroblasts and keratinoyctes in vitro. In conclusion, lower HMGB1 levels in diabetic skin may play an important role in impaired wound healing and this defect may be overcome by the topical application of HMGB1. © 2008 The Society for Investigative Dermatology.

High-mobility group box 1 protein in human and murine skin: Involvement in wound healing

BIANCHI, MARCO EMILIO;
2008-01-01

Abstract

High-mobility group box 1 (HMGB1) protein is a multifunctional cytokine involved in inflammatory responses and tissue repair. In this study, it was examined whether HMGB1 plays a role in skin wound repair both in normoglycemic and diabetic mice. HMGB1 was detected in the nucleus of skin cells, and accumulated in the cytoplasm of epidermal cells in the wounded skin. Diabetic human and mouse skin showed more reduced HMGB1 levels than their normoglycemic counterparts. Topical application of HMGB1 to the wounds of diabetic mice enhanced arteriole density, granulation tissue deposition, and accelerated wound healing. In contrast, HMGB1 had no effect in normoglycemic mouse skin wounds, where endogenous HMGB1 levels may be adequate for optimal wound closure. Accordingly, inhibition of endogenous HMGB1 impaired wound healing in normal mice but had no effect in diabetic mice. Finally, HMGB1 had a chemotactic effect on skin fibroblasts and keratinoyctes in vitro. In conclusion, lower HMGB1 levels in diabetic skin may play an important role in impaired wound healing and this defect may be overcome by the topical application of HMGB1. © 2008 The Society for Investigative Dermatology.
2008
Animals; Chemotaxis; Cytoplasm; Diabetes Complications; Epidermis; Fibroblasts; HMGB1 Protein; Humans; Inflammation; Keratinocytes; Mice; Models, Biological; Skin; Gene Expression Regulation; Wound Healing; 2708
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/64451
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 137
  • ???jsp.display-item.citation.isi??? 126
social impact