Genetic programs promoting cell cycle progression, DNA repair, and survival are coordinately induced in developing T cells and require rapid turnover of effector molecules. As the COP9 signalosome (CSN) has been placed at the crossroads of these programs in lower organisms, we addressed its role by conditionally deleting CSN5/JAB1, its catalytic subunit, in developing thymocytes. CSN5/JAB1(del/del) thymocytes show defective S phase progression and massive apoptosis at the double-negative (DN) 4-double-positive (DP) transition stage, which is paralleled by altered turnover of selected CSN-controlled substrates, including p53, IkappaB-alpha, and beta-catenin. Combined dysregulation of the p53 and NF-kappaB pathways affects thymocyte survival by altering the mRNA and protein levels of selected Bcl-2 family members. Genetic complementation analysis performed on p53(-/-), Bcl-xL/Bcl-2A1, or T cell receptor transgenic backgrounds indicates that CSN5/JAB1 acts at distinct developmental stages to coordinate proliferation, survival, and positive selection of thymocytes by controlling the induction of defined genetic programs acting downstream of CSN-regulated transcription factors.

Genetic programs promoting cell cycle progression, DNA repair, and survival are coordinately induced in developing T cells and require rapid turnover of effector molecules. As the COP9 signalosome (CSN) has been placed at the crossroads of these programs in lower organisms, we addressed its role by conditionally deleting CSN5/JAB1, its catalytic subunit, in developing thymocytes. CSN5/JAB1(del/del) thymocytes show defective S phase progression and massive apoptosis at the double-negative (DN)4-double-positive (DP) transition stage, which is paralleled by altered turnover of selected CSN-controlled substrates, including p53,I kappa B-alpha, and beta-catenin. Combined dysregulation of the p53 and NF-kappa B pathways affects thymocyte survival by altering the mRNA and protein levels of selected Bcl-2 family members. Genetic complementation analysis performed on p53(-/-), Bcl-xL/Bcl-2A1, or T cell receptor transgenic backgrounds indicates that CSN5/JAB1 acts at distinct developmental stages to coordinate proliferation, survival, and positive selection of thymocytes by controlling the induction of defined genetic programs acting downstream of CSN-regulated transcription factors. OI Montini, Eugenio/0000-0003-1771-6067 ZR 0 ZS 0 Z8 1 ZB 39

Targeted inactivation of the COP9 signalosome impairs multiple stages of T cell development

DOGLIONI , CLAUDIO;PARDI , RUGGERO
2008-01-01

Abstract

Genetic programs promoting cell cycle progression, DNA repair, and survival are coordinately induced in developing T cells and require rapid turnover of effector molecules. As the COP9 signalosome (CSN) has been placed at the crossroads of these programs in lower organisms, we addressed its role by conditionally deleting CSN5/JAB1, its catalytic subunit, in developing thymocytes. CSN5/JAB1(del/del) thymocytes show defective S phase progression and massive apoptosis at the double-negative (DN) 4-double-positive (DP) transition stage, which is paralleled by altered turnover of selected CSN-controlled substrates, including p53, IkappaB-alpha, and beta-catenin. Combined dysregulation of the p53 and NF-kappaB pathways affects thymocyte survival by altering the mRNA and protein levels of selected Bcl-2 family members. Genetic complementation analysis performed on p53(-/-), Bcl-xL/Bcl-2A1, or T cell receptor transgenic backgrounds indicates that CSN5/JAB1 acts at distinct developmental stages to coordinate proliferation, survival, and positive selection of thymocytes by controlling the induction of defined genetic programs acting downstream of CSN-regulated transcription factors.
2008
Genetic programs promoting cell cycle progression, DNA repair, and survival are coordinately induced in developing T cells and require rapid turnover of effector molecules. As the COP9 signalosome (CSN) has been placed at the crossroads of these programs in lower organisms, we addressed its role by conditionally deleting CSN5/JAB1, its catalytic subunit, in developing thymocytes. CSN5/JAB1(del/del) thymocytes show defective S phase progression and massive apoptosis at the double-negative (DN)4-double-positive (DP) transition stage, which is paralleled by altered turnover of selected CSN-controlled substrates, including p53,I kappa B-alpha, and beta-catenin. Combined dysregulation of the p53 and NF-kappa B pathways affects thymocyte survival by altering the mRNA and protein levels of selected Bcl-2 family members. Genetic complementation analysis performed on p53(-/-), Bcl-xL/Bcl-2A1, or T cell receptor transgenic backgrounds indicates that CSN5/JAB1 acts at distinct developmental stages to coordinate proliferation, survival, and positive selection of thymocytes by controlling the induction of defined genetic programs acting downstream of CSN-regulated transcription factors. OI Montini, Eugenio/0000-0003-1771-6067 ZR 0 ZS 0 Z8 1 ZB 39
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/6491
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 60
  • ???jsp.display-item.citation.isi??? 64
social impact