The GLP-1 receptor (GLP-1R) is a key target for type 2 diabetes (T2D) treatment. Since endocytic trafficking of agonist-bound receptors is one of the most important routes for regulation of receptor signaling, a better understanding of this process may facilitate the development of new T2D therapeutic strategies. Here, we have screened 29 proteins with known functions in G protein-coupled receptor trafficking for their role in GLP-1R potentiation of insulin secretion in pancreatic beta cells. We identify five (clathrin, dynamin1, AP2, SNX27 and SNX1) that increase and four (HIP1, HIP14, GASP-1 and Nedd4) that decrease insulin secretion from murine insulinoma MIN6B1 cells in response to the GLP-1 analogue exendin-4. The roles of Huntingtin-interacting protein 1 (HIP1) and the endosomal sorting nexins SNX1 and SNX27 were further characterized in mouse and human beta cell lines and human islets. While HIP1 was required for the coupling of cell surface GLP-1R activation with clathrin-dependent endocytosis, the sorting nexins were found to control the balance between GLP-1R plasma membrane recycling and lysosomal degradation, and, in doing so, determine the overall beta cell incretin responses. We thus identify key modulators of GLP-1R trafficking and signaling that might provide novel targets to enhance insulin secretion in T2D.

A Targeted RNAi Screen Identifies Endocytic Trafficking Factors that Control GLP-1 Receptor Signaling in Pancreatic Beta Cells

Piemonti, Lorenzo;
2017-01-01

Abstract

The GLP-1 receptor (GLP-1R) is a key target for type 2 diabetes (T2D) treatment. Since endocytic trafficking of agonist-bound receptors is one of the most important routes for regulation of receptor signaling, a better understanding of this process may facilitate the development of new T2D therapeutic strategies. Here, we have screened 29 proteins with known functions in G protein-coupled receptor trafficking for their role in GLP-1R potentiation of insulin secretion in pancreatic beta cells. We identify five (clathrin, dynamin1, AP2, SNX27 and SNX1) that increase and four (HIP1, HIP14, GASP-1 and Nedd4) that decrease insulin secretion from murine insulinoma MIN6B1 cells in response to the GLP-1 analogue exendin-4. The roles of Huntingtin-interacting protein 1 (HIP1) and the endosomal sorting nexins SNX1 and SNX27 were further characterized in mouse and human beta cell lines and human islets. While HIP1 was required for the coupling of cell surface GLP-1R activation with clathrin-dependent endocytosis, the sorting nexins were found to control the balance between GLP-1R plasma membrane recycling and lysosomal degradation, and, in doing so, determine the overall beta cell incretin responses. We thus identify key modulators of GLP-1R trafficking and signaling that might provide novel targets to enhance insulin secretion in T2D.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/73704
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 28
social impact