Depletion of liprin-α1, ERC1 or LL5 scaffolds inhibits extracellular matrix degradation by invasive cells. These proteins co-accumulate near invadosomes in NIH-Src cells, identifying a novel invadosome-associated compartment distinct from the core and adhesion ring of invadosomes. Depletion of either protein perturbs the organization of invadosomes without influencing the recruitment of MT1-MMP metalloprotease. Liprin-α1 is not required for de novo formation of invadosomes after their disassembly by microtubules and Src inhibitors, while its depletion inhibits invadosome motility, thus affecting matrix degradation. Fluorescence recovery after photobleaching shows that the invadosome-associated compartment is dynamic, while correlative light immunoelectron microscopy identifies bona fide membrane-free invadosome-associated regions enriched in liprin-α1, which is virtually excluded from the invadosome core. The results indicate that liprin-α1, LL5 and ERC1 define a novel dynamic membrane-less compartment that regulates matrix degradation by affecting invadosome motility.

Identification of a membrane-less compartment regulating invadosome function and motility / Sala, Kristyna; Raimondi, Andrea; Tonoli, Diletta; Tacchetti, Carlo; De Curtis, Ivan; DE CURTIS, Ivanmatteo. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 8:1(2018), p. 1164. [10.1038/s41598-018-19447-2]

Identification of a membrane-less compartment regulating invadosome function and motility

Tacchetti, Carlo
Penultimo
Membro del Collaboration Group
;
DE CURTIS, IVANMATTEO
2018-01-01

Abstract

Depletion of liprin-α1, ERC1 or LL5 scaffolds inhibits extracellular matrix degradation by invasive cells. These proteins co-accumulate near invadosomes in NIH-Src cells, identifying a novel invadosome-associated compartment distinct from the core and adhesion ring of invadosomes. Depletion of either protein perturbs the organization of invadosomes without influencing the recruitment of MT1-MMP metalloprotease. Liprin-α1 is not required for de novo formation of invadosomes after their disassembly by microtubules and Src inhibitors, while its depletion inhibits invadosome motility, thus affecting matrix degradation. Fluorescence recovery after photobleaching shows that the invadosome-associated compartment is dynamic, while correlative light immunoelectron microscopy identifies bona fide membrane-free invadosome-associated regions enriched in liprin-α1, which is virtually excluded from the invadosome core. The results indicate that liprin-α1, LL5 and ERC1 define a novel dynamic membrane-less compartment that regulates matrix degradation by affecting invadosome motility.
2018
Multidisciplinary
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/74289
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact