OBJECTIVES:To test whether left ventricular (LV) dysfunction affecting type 1 diabetic-uremic patients was associated with abnormal heart high-energy phosphates (HEPs) and to ascertain whether these alterations were also present in recipients of kidney or kidney-pancreas transplantation.BACKGROUND:Heart failure is the major determinant of mortality in patients with diabetic uremia. Both uremia and diabetes induce alterations of cardiac HEPs metabolism.METHODS:Magnetic resonance imaging and phosphorous magnetic resonance spectroscopy of the LV were performed in the resting state by means of a 1.5-T clinical scanner. Eleven diabetic-uremic patients, 5 nondiabetic patients with uremia, 11 diabetic recipients of kidney transplantation, and 16 diabetic recipients of combined kidney-pancreas transplantation were studied in a cross-sectional fashion. Eleven nondiabetic recipients of kidney-only transplant and 13 healthy subjects served as control groups.RESULTS:Uremic patients had higher LV mass, diastolic dysfunction, and lower phosphocreatine (PCr)/adenosine triphosphate (ATP) ratio in comparison with recipients of kidney-pancreas or nondiabetic recipients of kidney transplant. In diabetic recipients of kidney transplant the PCr/ATP ratio was higher than in uremic patients but was lower than in the controls. Recipients of combined kidney-pancreas transplant had a higher ratio than uremic patients but no difference was found in comparison with controls.CONCLUSIONS:Altered resting myocardial HEPs metabolism may contribute to LV dysfunction in diabetic-uremic patients. In diabetic recipients of kidney transplantation, a certain degree of LV metabolic and functional impairment was found. In combined kidney-pancreas recipients the resting LV metabolism and function were not different than in controls.

OBJECTIVES:To test whether left ventricular (LV) dysfunction affecting type 1 diabetic-uremic patients was associated with abnormal heart high-energy phosphates (HEPs) and to ascertain whether these alterations were also present in recipients of kidney or kidney-pancreas transplantation.BACKGROUND:Heart failure is the major determinant of mortality in patients with diabetic uremia. Both uremia and diabetes induce alterations of cardiac HEPs metabolism.METHODS:Magnetic resonance imaging and phosphorous magnetic resonance spectroscopy of the LV were performed in the resting state by means of a 1.5-T clinical scanner. Eleven diabetic-uremic patients, 5 nondiabetic patients with uremia, 11 diabetic recipients of kidney transplantation, and 16 diabetic recipients of combined kidney-pancreas transplantation were studied in a cross-sectional fashion. Eleven nondiabetic recipients of kidney-only transplant and 13 healthy subjects served as control groups.RESULTS:Uremic patients had higher LV mass, diastolic dysfunction, and lower phosphocreatine (PCr)/adenosine triphosphate (ATP) ratio in comparison with recipients of kidney-pancreas or nondiabetic recipients of kidney transplant. In diabetic recipients of kidney transplant the PCr/ATP ratio was higher than in uremic patients but was lower than in the controls. Recipients of combined kidney-pancreas transplant had a higher ratio than uremic patients but no difference was found in comparison with controls.CONCLUSIONS:Altered resting myocardial HEPs metabolism may contribute to LV dysfunction in diabetic-uremic patients. In diabetic recipients of kidney transplantation, a certain degree of LV metabolic and functional impairment was found. In combined kidney-pancreas recipients the resting LV metabolism and function were not different than in controls

Cross-sectional assessment of the effect of kidney and kidney-pancreas transplantation on resting left ventricular energy metabolism in type 1 diabetic-uremic patients: a phosphorous-31 magnetic resonance spectroscopy study

DE COBELLI, FRANCESCO;ESPOSITO, ANTONIO;SECCHI, ANTONIO;DEL MASCHIO, ALESSANDRO
2005-01-01

Abstract

OBJECTIVES:To test whether left ventricular (LV) dysfunction affecting type 1 diabetic-uremic patients was associated with abnormal heart high-energy phosphates (HEPs) and to ascertain whether these alterations were also present in recipients of kidney or kidney-pancreas transplantation.BACKGROUND:Heart failure is the major determinant of mortality in patients with diabetic uremia. Both uremia and diabetes induce alterations of cardiac HEPs metabolism.METHODS:Magnetic resonance imaging and phosphorous magnetic resonance spectroscopy of the LV were performed in the resting state by means of a 1.5-T clinical scanner. Eleven diabetic-uremic patients, 5 nondiabetic patients with uremia, 11 diabetic recipients of kidney transplantation, and 16 diabetic recipients of combined kidney-pancreas transplantation were studied in a cross-sectional fashion. Eleven nondiabetic recipients of kidney-only transplant and 13 healthy subjects served as control groups.RESULTS:Uremic patients had higher LV mass, diastolic dysfunction, and lower phosphocreatine (PCr)/adenosine triphosphate (ATP) ratio in comparison with recipients of kidney-pancreas or nondiabetic recipients of kidney transplant. In diabetic recipients of kidney transplant the PCr/ATP ratio was higher than in uremic patients but was lower than in the controls. Recipients of combined kidney-pancreas transplant had a higher ratio than uremic patients but no difference was found in comparison with controls.CONCLUSIONS:Altered resting myocardial HEPs metabolism may contribute to LV dysfunction in diabetic-uremic patients. In diabetic recipients of kidney transplantation, a certain degree of LV metabolic and functional impairment was found. In combined kidney-pancreas recipients the resting LV metabolism and function were not different than in controls
OBJECTIVES:To test whether left ventricular (LV) dysfunction affecting type 1 diabetic-uremic patients was associated with abnormal heart high-energy phosphates (HEPs) and to ascertain whether these alterations were also present in recipients of kidney or kidney-pancreas transplantation.BACKGROUND:Heart failure is the major determinant of mortality in patients with diabetic uremia. Both uremia and diabetes induce alterations of cardiac HEPs metabolism.METHODS:Magnetic resonance imaging and phosphorous magnetic resonance spectroscopy of the LV were performed in the resting state by means of a 1.5-T clinical scanner. Eleven diabetic-uremic patients, 5 nondiabetic patients with uremia, 11 diabetic recipients of kidney transplantation, and 16 diabetic recipients of combined kidney-pancreas transplantation were studied in a cross-sectional fashion. Eleven nondiabetic recipients of kidney-only transplant and 13 healthy subjects served as control groups.RESULTS:Uremic patients had higher LV mass, diastolic dysfunction, and lower phosphocreatine (PCr)/adenosine triphosphate (ATP) ratio in comparison with recipients of kidney-pancreas or nondiabetic recipients of kidney transplant. In diabetic recipients of kidney transplant the PCr/ATP ratio was higher than in uremic patients but was lower than in the controls. Recipients of combined kidney-pancreas transplant had a higher ratio than uremic patients but no difference was found in comparison with controls.CONCLUSIONS:Altered resting myocardial HEPs metabolism may contribute to LV dysfunction in diabetic-uremic patients. In diabetic recipients of kidney transplantation, a certain degree of LV metabolic and functional impairment was found. In combined kidney-pancreas recipients the resting LV metabolism and function were not different than in controls.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/801
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 43
social impact